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ABSTRACT 

 

 

This research is motivated by two significant challenges facing the planet: reducing the 

emission of CO2  to the atmosphere and production of sustainable fuels by harnessing solar 

energy. The main objective of this work is the study of promising photocatalysts for CO2 

reduction. DFT modeling of CO2, subnanometer Ag&Pt clusters, and anatase TiO2 (101) surface 

is employed to gain fundamental understanding of the catalytic process, followed by validation 

using a guided experimental endeavor. The binding mechanism of CO2 on the surface is 

investigated in detail to gain insights into the catalytic activity and to assist with characterizing 

the photocatalyst. For CO2 photoreduction, the cluster induced sub-bandgap and the preferred 

adsorbate in the first and key step of the CO2 photoreduction are explored.  

It is found that TiO2-supported Pt octamers offer key advantages for CO2 photoreduction: 

1. by providing additional stable adsorption sites for favored CO2 species in the first step, and 2. 

by aiding in CO2
-
 anion formation. Electronic structure analysis suggests these factors arise 

primarily from the hybridization of the bonding molecular orbitals of CO2 with d orbitals of the 

Pt atoms. Also, structural fluxionality is quantified to investigate geometry dependent (3D-2D) 

CO2 adsorption. Geometric information, electronic information, and C-O bond breaking 

tendency of adsorbed CO2 species are proposed to connect to experimental observables (IR 

frequency). The CO2 adsorption sites on supported Pt clusters are also identified using IR as the 

indicator. A cluster-induced CO2 dissociation to CO pathway is also discovered. Finally,  

experimental work including dendrimer-encapsulated technique, TPD, and UV-Vis is performed 



x 
 

to validate the computational results, the availability of adsorption sites and CO2 binding strength 

on supported Pt clusters.  
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CHAPTER 1: INTRODUCTION 

 

 

1.1 Motivation 

Harvesting solar energy to convert CO2 to transferable hydrocarbon fuel addresses two 

major challenges facing the planet: reducing CO2 levels in the atmosphere and generating 

renewable fuels.
1-3

 According to an Intergovernmental Panel on Climate Change report(IPCC 

2007),
4
 the atmospheric CO2 level have been rising at an increasing rate mainly due to the 

increased consumption of energy
3
  with 81% of current energy usage coming from fossil fuels 

(2011).
3
 Renewable fuels production from biomass, wind, solar energy are some possible ways 

to address this issue;
2
 CO2 photoreduction via sunlight is a very attractive option, because it 

addresses two significant challenges at the same time: reducing the emission of CO2 to the 

atmosphere, and the production of sustainable fuels by harnessing solar energy.  

Photocatalytic reduction of CO2 involves first the absorption of incident photo energy 

that is equal to or greater than the band gap of the semiconductor to generate e-/h+ pairs in the 

conduction and valance bands, respectively. This is followed by the migration of the pairs to 

sites where the reduction of CO2 and water take place, leading to production of hydrocarbons.
1, 2, 

5-8
 Recent reviews

1, 2
 show that a large group of photocatalytic materials have activity for CO2 

conversion; however, efficiencies achieved to date have been abysmally small.
7
 One challenge is 

that only a small fraction of the incident sunlight spectrum is utilized in creating e-/h+ pairs due 

to bandgap and band edge limitations. Doping the semiconductor with other materials such as N
9, 

10
 and Ag

11
 is one approach proposed to lower the bandgap. The recombination of e-/h+ pairs is 
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another crucial challenge. The e-/h+ pairs tend to recombine either in the volume or on the 

surface of the semiconductor before redox reactions. Depositing metal nanoparticle such as Pt 

nanoparticle is one solution, the photo-generated electrons accumulating at the co-catalyst once 

these electrons are generated. The co-catalyst serves as a reservoir for the electrons and also 

promotes the reaction by lowering the activation barriers for the reduction reactions. A third 

approach that has been proposed is to use surface plasmon resonance (SPR) exhibited by 

nanoparticles to concentrate the electromagnetic field and promote the generation of e-/h+ pairs. 

The challenges and corresponding solutions are summarized
9, 12-18

 in Figure 1.1.   

 

Figure 1.1 Summary of challenges and corresponding solution in photocatalysis 

Nano- and sub-nanometer sized transition metal particles deposited on supports as the 

catalyst can enhance the activity of a variety of reactions including: organic photocatalytic 

degradation,
19, 20

 direct propylene epoxidation,
21

 CO oxidation,
22-25

 and hydrogenation of 

acrolein and oxidative dehydrogenation of propane.
26, 27

 For subnanometer metal clusters, 

consisting of several atoms, it has been shown that the activity enhancement is due to dynamic 

structural fluxionality,
24

 larger fraction of under-coordinated surface atoms,
26

 and the interactions 

between deposited cluster and the support.
28

 A schematic representation of the advantages of 

subnanometer metal cluster and selected applications are shown in Figure 1.2. This has driven 
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this research on developing a new study of the subnanometer metal clusters based 

photocatalyst.
29

  

 

Figure 1.2 Advantages of subnanometer metal clusters and selected applications. 

1.2 Approach Taken 

In this research we study the properties of subnanometer Ag/Pt clusters deposited on 

anatase TiO2 (101) surface to help design efficient catalysts and photocatalysts using ab initio 

calculations and dendrimer templated synthesis. An understanding of electronic and structural 

properties of such metal clusters adsorbed on support surfaces help gain insights into 

subnanometer clusters based catalysts. The application of subnanometer metal clusters on CO2 

photoreduction is studied to gain insights into a new class photocatalyst. Computational 

approach, VASP and Gaussian, provides understanding of interactions of subnanometer metal 

clusters, reactive species (CO2), and the support surface. Derived information will then be 

verified with experimental results employing dendrimer-encapsulated subnanometer cluster 

synthesis. A schematic representation of this research is given in Figure 1.3. This methodology 

for the molecular design of photocatalysts can be used for other metal clusters and 

supports/semiconductors.  
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Figure 1.3 Schematic representation of this research. 

1.3 Specific Objectives  

Specific objectives of this research include: 

 Study of the interplay between subnanometer Pt/Ag clusters and anatase TiO2 (101): 

Study of binding mechanism to assist subnanometer clusters characterization, catalysis 

insights, sintering and decoration, photocatalysis insights, effect of metal induced sub-

bandgaps.      

 Study the effect of the presence of subnanometer metal clusters, the Pt cluster geometry, 

and the presence of extra electrons on the first and key step study of CO2 photoreduction 

mechanism on anatase TiO2 (101) supported Pt/Ag subnanometer.  

 Dendrimer-encapsulated subnanometer cluster synthesis to validate the conclusions 

drawn from the computational method: sub-bandgaps and availability of key precursor 

binding sites.  
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1.4 Outline of Dissertation  

The structure of this dissertation is as follows: 

 Chapter 2 describes the computational and experimental methods: electronic structure    

      calculations and dendrimer templated synthesis.  

 Chapter 3 explores interaction between subnanometer Ag/Pt clusters and anatase TiO2  

       (101) surface: implications for catalysis and photocatalysis.  

 Chapter 4 investigates the key precursor adsorption in the first and key step of CO2  

         photoreduction on the TiO2 supported Ag/Pt octamers. 

 Chapter 5 examines the Pt cluster size effect, structural fluxionality, on the key precursor 

adsorption. 

 Chapter 6 studies the effect of added electrons on CO2 adsorption and reduction to 

simulate the effect of photoexcited electrons on photocatalysis.   

 Chapter 7 attempts to validate the DFT results using Dendrimer- encapsulated synthesis 

technique, TPD, and UV-Vis experiments. 

 Chapter 8 summarizes the conclusions and contains suggestions for future work. 
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CHAPTER 2: METHODS 

 

 

In this chapter, methods for both computational and experimental work will be briefly 

described. The computational methods are based on electronic structure calculations to gain 

fundamental insights into the interactions of the CO2, subnanometer metal clusters, and the 

support. Dendrimer based synthesis technique is used for the synthesis of the subnanometer 

clusters to validate the computational results. 

2.1 Electronic Structure Calculations 

Selected highlights in early first-principles calculations will be reviewed first in this 

section, followed by the introduction of Density functional theory (DFT), and of some important 

approximations to satisfy both computation efficiency and electronic property accuracy. Two 

softwares, VASP and GAUSSIAN, used in the research will be introduced last.         

2.1.1 Early First-Principles Calculations  

The ground-breaking Schrödinger equation is the basis of quantum mechanics, and the 

derived wave function from this equation given a specific Hamiltonian operator contains all 

electronic information needed. Born-Oppenheimer approximation is assumed to decouple the 

electronic and ionic variables in Schrodinger equation to simplify the problem. Early first-

principles methods, Hartree and Hartree-Fock methods have a significant effect on the 

extraordinary density functional theory. The following are the descriptions of the 

abovementioned highlights.       
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2.1.1.1 Schrödinger Equation  

The failure to apply classic mechanics to describe the behavior of small particles, like the 

electron, leads to the development of quantum mechanics. The foundation of this breakthrough is 

the Schrödinger equation (Erwin Schrödinger, 1926) as shown: 

                                                                   Hψ = E ψ                                     (2.1) 

where, H is the Hamiltonian operator, ψ is wave function of the system, and E is the system 

energy. The Hamiltonian operator H is given by 

                                            H= En+Ee+Unn+Une+Uee                                                     (2.2)  

where En and Ee are kinetic energy of the nuclei and electron, respectively; Unn, Une,and Uee are 

the potential energies regarding nuclei-nuclei, nuclei-electron and electron-electron, respectively. 

Note that the Schrödinger equation is a function of variables related to nuclei, electrons and time. 

If we focus on the time independent system, then time variable can be neglected in Equation 2.1, 

and this simplifies the problem. Another important assumption that brings the Schrödinger 

equation to further simplification is Born-Oppenheimer approximation (Born and Oppenheimer, 

1927).  

2.1.1.2 Born-Oppenheimer Approximation  

An electron is far lighter than the nucleus and this means the former moves much faster 

than the latter. Therefore, when nuclei move, the electrons quickly react to the movement and 

always arrange themselves in the lowest energy states with respect to a given set of nuclear 

configuration. With this approximation, the nuclear and electronic variables are decoupled into 

separate mathematical formulation, meaning nuclear variable can be removed form Equation 2.1. 

The original Hamiltonian operator H, Equation 4.2, is also reduced to electronic related entities 

only:  
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                                              H= Ee+Une+Uee                                                                  (2.3) 

The Schrödinger equation is then simplified to (Ee+Une+Uee)ψ(r) = Eψ(r). Extending to many-

electron problem, the Hamiltonian operator H is as below: 

                                                          Ee =−
ħ2

2𝑚
∑ ∇𝑖

2
𝑖                                                                    (2.4) 

                                                         Une=− ∑
𝑍𝐼𝑒2

|𝑟𝑖−𝑅𝐼|𝐼𝑖                                                                   (2.5) 

                                                         Uee= 
1

2
∑

𝑒2

|𝑟𝑖−𝑟𝑗|𝑖≠𝑗                                                                 (2.6) 

The wave equation is now given by 

                                      (−
ħ2

2𝑚
∑ ∇𝑖

2
𝑖  − ∑

𝑍𝐼𝑒2

|𝑟𝑖−𝑅𝐼|𝐼𝑖   + 
1

2
∑

𝑒2

|𝑟𝑖−𝑟𝑗|𝑖≠𝑗   )ψ = Eψ                                 (2.7) 

2.1.1.3 Hartree and Hartree-Fock Methods 

The pioneering approximation of the potential energy among electrons came from the 

Hartree method. This method assumes that the interactions among electrons are neglected and 

each electron experiences a mean field consisted of the electrons, leading to the separate non-

interacting sub-systems instead of the many-electron system.  Improved by Hartree-Fock (HF) 

method, the Slater determinant is introduced to incorporate the antisymmetry nature: when two 

electrons exchange their coordinates, the wave function should change its sign. Therefore, the 

exchange energy is considered in the HF method and this brings more accuracy to the obtained 

electronic properties. The corresponding Hamiltonian becomes  

                                                       H= Ee+Une+UH+Ux                                                               (2.8) 

Here, UH represents Hartree potential and Ux accounts for the exchange energy. 
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2.1.2 Density Functional Theory  

Hohenberg, Kohn, and Sham lay the foundation of Density functional theory (DFT). The 

electron density is introduced as the main player to solve the many-electron wave equation, and 

the problem is simplified from 3N dimensional problem to a set of N 3 dimensional problems. 

Note that the wave equation is moved from the wave function based problem to the electron 

density based problem. In DFT, the assumption of the noninteracting electrons makes possible 

the connection of the electron density and the related wave function; along with the Hohenberg-

Kohn theorems (1964), and Kohn-Sham approach (1965), the ground-state electron density can 

determine all the electronic properties as those obtained from the wave equation method with 

appreciable reduced calculation cost. Selected important progress regarding the approximation of 

the term of Kohn-Sham equation and reduction of the computation cost will be highlighted.            

2.1.2.1 Hohenberg-Kohn Theorems 

The first theorem states that there is a relation between the ground-state electron density 

and the external potential, Uext(Une). Uext accounts for the interaction between the nuclei and 

electrons, so once the ground-state electron density is given, the external potential can be 

realized and vice versa. The corresponding Hamiltonian is then defined, so are all other 

electronic properties in the ground state of a system. The second theorem states the validation of 

the application of the variational principle on the DFT. The ground-state energy of the system 

can be obtained by varying the electron density. The minimum energy is the ground-state energy 

of the system and the ground-state electron density is the electron density at that minimizing 

state.    
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2.1.2.2 Kohn-Sham Approach 

The Kohn-Sham (KS) ansatz is that the interacting many-electron system is represented 

as noninteracting one-electron sub-systems plus the exchange-correlation term. This means the 

electron density of the true physical problem can be obtained by dealing with a more solvable 

fictitious formulation. Note that the interacting and noninteracting terms are decoupled by this 

approach. In sum, the Hamiltonian of the Kohn-Sham approach is  

                                                              Hks= Ee+Uext+UH+Uxc                                                    (2.9) 

where Ee is the noninteracting kinetic energy here; Uxc is the exchange-correlation potential 

energy, and all the interacting elements are included in this term. With the theorems and 

approach, the system variables are reduced, and the electron density, external potential, 

Hamiltonian and wave function are interconnected. As shown below, the corresponding Kohn-

Sham equations are therefore used in the framework of DFT. 

                                                                  Hks ψi
ks

 = E ψi
ks

                                                        (2.10) 

where ψi
ks

 is the KS orbital, which is the eigenfunctions of the KS equations.  

2.1.2.3 Exchange and Correlation Functionals 

Local density approximation (LDA) and generalized gradient approximation (GGA) are 

two most common methods to approximate the exchange-correlation term in Equation 2.9. LDA 

take the information of the local density to approximate the exchange and correlation functional. 

The idea is that the real electron density distribution is treated as a combination of pieces of 

homogeneous electron densities and the total property is then approached by summing up those 

of each element. On the other hand, GGA further considers the local gradient at a given point. 

Therefore, the GGA consider both local and semilocal information of the electron density. The 

common GGA based methods are Perdew-Wang (PW91)
30

 and Perdew-Burke-Enzerhof (PBE)
31

. 
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One important limitation of both methods is the underestimation of the bandgap, about 50% 

smaller.    

2.1.2.4 Basis Set 

In electronic structure calculations, the basis set is the mathematical formulation of the 

orbitals to make possible theoretical calculations. There are two common types of basis set: local 

and plane wave.  Local basis set, Gaussian and atom-centered orbitals, is suited for isolated 

system such as atoms and molecules, because the localized nature of orbitals of such systems is 

satisfied. For the periodic systems, the plane wave basis set is a better choice. Plane wave basis 

set meets the Bloch theorem and the periodic boundary conditions. Also, they are orthonormal 

solutions and convenient for the related mathematical operations and Fourier transformation. 

However, for each atom in the systems, more than a hundred plane waves are needed and even in 

the vacuum space, and this makes the calculations tedious.     

2.1.2.5 Pseudopotential Approach  

In a chemical reaction or any physical property calculation, valence electrons mainly 

participate, whereas the core electrons mostly stay inactive due to their tight bounding to the 

nucleus.  This facilitates the idea to freeze the core electrons leading to the pseudopotential (PP) 

approach.
32, 33

 By neglecting core electrons in the calculation, the needed number of basis set is 

significantly reduced. The PPs are said to be hard and soft by the high and low cutoff energy 

adopted, respectively. The common PPs are ultrasoft pseudopotentials (US-PP)
34

 and projector-

augmented wave (PAW).
35

 The US-PP is known for its reduced amplitude of the pseudo wave 

function and therefore smaller cutoff energy is sufficient and this leads to less computation cost. 

Note that USPP generates only valence charge density instead of total charge density. PAW is 

designed to consider both core and some valance parts of the wave function, in order to maintain 



12 
 

both the advantage of low computation cost and accuracy of the normal wave function; in 

addition, total charge density can be obtained from this method.     

2.1.3 VASP 

Vienna Ab Initio Simulation package (VASP) is a DFT based software tool developed by 

Mike Payne, Jürgen Hafner, Georg Kresse and Jürgen Furthmüller. It is used to perform ab-initio 

quantum mechanical molecular dynamics at finite temperature. VASP is equipped with US-PPs 

and PAW for PPs, and LDA and PBE for exchange-correlation functionals under the plane wave 

basis set, so it works well for the periodic systems. VASP carries electronic and ionic 

minimizations, generating the electronic properties such as total energy, density of state, band 

structure and partial charge density. The minimization framework of VASP involves an outer 

loop for ionic minimization and an inner loop for electronic minimization. The general flow of 

VASP starts with evaluation of the Hks given the input files, solve the KS equations for KS 

orbitals and then test convergence of the generated electron density in each iteration. If the 

convergence is met, the output files are generated and so are the electronic properties.  

2.1.4 Gaussian 

Gaussian is an electronic structure package for computational chemistry mainly 

developed by the group led by John Pople. A graphical user interface (GUI), GaussianView, is 

also developed to offer a friendly use of Gaussian. Gaussian is embedded with a variety of 

theoretical levels, from semi-empirical, HF related to DFT. It supports the prediction of 

electronic properties such as total energy, stable and transition state molecular structures, and 

vibrational frequencies. Modeling of excited states and systems in solution are also one 

capability of Gaussian. Contrary to VASP, Gaussian works well for isolated systems due to its 

focus on the local basis sets.    
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2.2 Experimental Methods  

The common techniques to prepare the subnanometer cluster can be classified into 

physical and chemical routes. For the physical route, the clusters are created using laser 

deposition by focusing YAG laser beam on a specific metal rod, then directed to quadrupole 

mass selector, and finally deposited on the support at ultrahigh vacuum. Selected examples are 

Nin(n=1,2,5,10,15)
36

, Agn (n=1-3)
37

, and Aun (n=1-4,7)
38

 on rutile TiO2. Dendrimer templated 

synthesis, on the other hand, is one common chemical route for the synthesis of subnanometer 

clusters. In this section, a brief review of the nanoscopic nanoparticles (NPs) synthesis methods 

will be presented first, followed by the introduction of dendrimer templated synthesis.  

2.2.1 Brief Review of Nanoscopic Metal Synthesis Methods 

There are two ways to synthesize metal NPs, top down methods and bottom up methods. 

The former starts with grinding of bulk metals, and followed by stabilization procedures; the 

latter is based on the reduction of the metallic precursors, also called chemical reduction.
39

 In 

this section, some common synthesis methods are briefly introduced including their recent 

applications, followed by the introduction of the dendrimer templated synthesis.     

2.2.1.1 Chemical Reduction 

Chemical reduction method is the chemical reduction of the metal salts aqueous solution 

to zerovalent metal colloids in the presence of surfactant or polymeric ligands (PVP) to control 

the nanoparticle growth and to prevent agglomeration. Since Faraday first developed this method 

in 1857, two mainstream reduction methods have been developed and widely used, co-reduction 

and successive reduction. Co-reduction is the simultaneous reduction of the proper metallic 

precursor mixture in a single reduction step by reducing agents. By simultaneously reducing the 

aqueous mixture of HAuCl4
.
4H2O and AgClO4 using reducing agent NaBH4, Toshima and 
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coworkers
40

 obtained Ag(core)-Au(shell) bimetallic nanoparticles. Walker et al.
41

 synthesized 

Au-Cu nanocubes by co-reduction of Cu-(acac)2 and HAuCl4 using 1-dodecanethiol (DDT). On 

the other hand, successive reduction is the consecutive reduction of one metallic precursor after 

the previous reduction step. Marzan and colleagues
42

 obtained multishell Au and Ag bimetallic 

NPs by successive reduction of AgNO3 and HAuCl4 in the existence of CTAB. Yacaman et al.
43

 

obtained a three layer core shell Au-Pd bimetallic NP with alloyed core, Au-rich intermediate 

layer, and Pd-rich outer shell.  

2.2.1.2 Electrochemical Synthesis 

The basic idea of this method is to have a sacrificial metal anode. When the sacrificial 

metal is oxidized, metal ion migrates to cathode where reduction, nucleation, and growth then 

take place.
39

 Finally, mono or bimetallic NPs are formed. The advantage of this method 

according to Ma et al.
44

 is its high yield, ease of operation and risking by-products. They co-

reduced chloroauric acid (HAuCl4) and silver nitrate (AgNO3) in the presence of poly(vinyl-

pyrrolidone) (PVP) to synthesize Au-Ag NPs. Rashid-Nadimi and coworkers
45

 also obtained 

Au@Pt  core shell bimetallic NPs with this method. A gold electrode was used, followed by the 

adsorption of [PtCl6]
2-

 on the produced gold NPs. Pulsed potentiostatic reduction was adopted to 

obtain the Au@Pt NPs.  

2.2.1.3 Radiolysis 

In this method, solvated electrons produced from the γ-ray irradiation of water reduce the 

metal ions, leading to the formation of NPs. Various sized bimetallic Ag-Pt and Au-Pt NPs were 

prepared by Delcourt et al.
46

, irradiating aqueous containing Ag2SO4 and K2PtCl4 with different 

stabilizing agents. Recently, Nitani and colleagues
47

 demonstrated that employing a 4.8-MeV 
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electron beam to reduce the metal ions without any surfactant or stabilizer’s presence, and 

bimetallic composite NPs of Pt-Au, Pt-Cu and Pt-Ni on γ-Fe2O3 were synthesized.    

2.2.1.4 Sonochemical Synthesis 

This technique was carried out by Mizukoshi et al.
48

 to prepare Au@Pd core shell NPs. 

The reduction of Au and Pd ions in the solutions of NaAuCl4·2H2O, PdCl2·2NaCl·3H2O, and 

sodium dodecyl sulfate (SDS) was carried out by ultrasound irradiation. Ashokkumar and 

colleagues
49

 also reported the synthesis of Au-Ag Core-Shell bimetallic NPs by sonochemical 

method and claimed that this method could also be used to prepare other core shell NPs 

composed of a number of bimetallic systems.  

2.2.1.5 Photochemical Synthesis 

As has been reported by by Majima et al.
50

 in their recent comprehensive review paper, 

the essential of the photochemical approach is the formation of M
0
 under the conditions that 

prevents their precipitation. M
0
 is formed in two ways. Direct photoreduction is the straight 

photoreduction of the metal source, while photosensitization is using photochemically generated 

intermediates to reduce the metal ions. The advantage of this method is clean process, high 

spatial resolution and a great versatility. In the work done by Scaiano’s group,
51

 the 

photochemically generated 2-hydroxy-2-propyl radical was used for the reduction of  HAuCl4 

and AgNO3 in aqueous surfactant solutions, producing Au-Ag bimetallic NPs with different 

composition and architecture, alloys and core-shells.  

2.2.2 Dendrimer-Encapsulated Subnanometer Cluster Synthesis 

Dendrimer templated synthesis of metal nanoparticles is one remarkable technique to 

obtain the size-controlled metal nanoparticles, which improves one important issue, sintering, for 

subnanometer cluster. Dendrimers are quasuspherical hyperbranched functional groups that are 
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well organized from the core to the boundary and it is these functional groups that prevent the 

aggregations.
52

 The potential applications are catalysis, drug delivery, and molecular 

recognition.
53

 Depending on the accumulation sites of metal nanoparticles within the denderimer, 

there are four common metallodendrimers: (a) dendrimer-encapsulated metal particle, (b) 

periphery metallodendrimers, (c)core metallodendrimers, and (d) focal-point 

metallodendrimers.
53

 The major synthesis steps are complexation and reduction. For dendrimer-

encapsulated metal particle, there are two common dendrimers, Poly (amidoamine) (PAMAM) 

and poly(propylene imine) (PPI), and for PAMAM there exists three common dendrimer 

generations, Gn-OH(n=4,6, and 8) dendrimers, each with a theoretical distance between two 

outermost hydroxyl groups as 8.2, 5.4, and 3.2 Å, respectively.
53

 The nanovoid within the 

dendrimer allows the formation of the coordination bond between metal ion and the internal 

tertiary amine groups, which is the complexation step. Note that, the size of the nanoparticle is 

determined by the ratio of the metal ion/dendrimer. The following step is the reduction of the 

metal ion to zerovalent metal by reducing agent NaBH4.
54

 Selected example are Pdn (n=4,8,16) 

using poly(propylene imine)
55

, Pt12 and Pt13 using fourth-generation dendritic phenylazomethine 

with a triphenylpyridylmethane core
56

, and bimetallic Ni-Fe nanoparticles of  ̴1nm using fourth-

generation poly aminiamide.
57

 In this research, we focus on the dendrimer-encapsulated metal 

particle to study the sub-bandgap behavior of the subnanometer mono/bi metallic clusters and 

applications of subnanometer metal clusters on CO2 photoreduction.   
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CHAPTER 3: INTERPLAY BETWEEN SUBNANOMETER AG AND PT CLUSTERS 

AND ANATASE TIO2(101) SURFACE: IMPLICATIONS FOR CATALYSIS AND 

PHOTOCATALYSIS
58

  

 

 

This chapter summarizes the fundamental study of the interplay between subnanometer 

metal clusters and the support to shed lights on the design of promising (photo)-catalysts. 

Structural and electronic properties of Agn and Ptn (n=2, 4 and 8) clusters deposited on anatase 

TiO2 (101) surface were investigated using Density Functional Theory. Binding mechanisms that 

characterize deposited subnanometer clusters on the model surface in terms of favored sites and 

geometry insights were explored.  The restricted movement of interfacial cluster atoms as well as 

top layer cluster atom - surface atoms interaction was found to affect the adsorption 

characteristics. Metal nanoparticle encapsulation by the support is explained via the tendency to 

maximize orbital overlaps between deposited clusters and surface atoms. The cluster sintering 

was evaluated using adsorption energy and the number of local minima as indicators, suggesting 

sintering is less likely to occur for Pt cluster on the model surface. The cluster induced sub-

bandgaps are investigated in terms of its formation, size effect, and the correlation with d-band 

distribution.  

 

____________________________________________________________________________ 
Reprinted with permission from {Yang, C. T.; Balakrishnan, N.; Bhethanabotla, V. R.; Joseph, B., Interplay 

between Subnanometer Ag and Pt Clusters and Anatase TiO2 (101) Surface: Implications for Catalysis and 

Photocatalysis. The Journal of Physical Chemistry C 2014, 118, 4702-4714.}. Copyright {2015} American 

Chemical Society." (Refer to Appendix A) 

 



18 
 

3.1 Introduction  

Nano- and sub-nanometer sized transition metal particles deposited on supports have 

been shown to enhance the catalytic activity of a variety of reactions including: organic 

photocatalytic degradation,
19, 20

 CO oxidation,
22-24

 hydrogenation of acrolein and oxidative 

dehydrogenation of propane.
26, 27

 For subnanometer metal clusters, consisting of several atoms, it 

has been shown that the activity enhancement is due to dynamic structural fluxionality,
24

 larger 

fraction of under-coordinated surface atoms,
26

 and the interactions between deposited cluster and 

the support.
28

 An understanding of electronic and structural properties of such metal clusters 

adsorbed on the support surfaces will help the efficient design of subnanometer clusters based 

catalysts or photocatalysts.
29

          

A number of investigators
21, 23, 24, 26, 59-69

 have done experimental studies on the catalytic 

effect of oxide surfaces supported subnanometer clusters. Pt8-10 clusters based catalysts for the 

oxidative dehydrogenation of propane showed 40-100 times more reactivity than Pt monolith and 

vanadia.
26

 Oxidation of CO over Pt7 deposited TiO2(110) with varying reduction state of the 

TiO2 support was studied,
61

 and the slightly reduced state showed two orders of magnitude larger 

CO2 production rates than the strongly reduced state. Direct propylene epoxidation on Ag3 and 

Ag3 aggregates supported on alumina suppressed CO2 formation while showing high activity at 

low temperature.
21

 Studies
59, 62, 63, 68, 69

 have also shown that the catalytic property of the 

subnanometer cluster varies with size as well as the geometry. However, while experimental 

characterizations of such clusters identify stable adsorption sites,
62

 one finds it hard to 

experimentally determine the stable geometry of such clusters. Sintering is also an important 

issue in the subnanometer cluster related studies.
26

 Lei et al. observed sintering initiation of Ag 

trimer supported on alumina at 110°C.
21

 A motivation of this paper is to gain an understanding of 
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the interaction between the cluster and support, to suggest binding mechanisms associated with 

deposited subnanometer metal clusters, and also to shed light on the catalytic characteristics, 

such as sintering and encapsulation/decoration.         

One approach taken to improve the efficiency of the semiconductor photocatalyst is to 

deposit noble metal nanoparticles on the semiconductor surface.
18, 70

 The nanoparticles serve as a 

co-catalyst to reduce the recombination of e-/h+ pairs, and also as plasmonic particles to increase 

the concentration of photoexcited electrons.
71, 72

 On the other hand, subnanometer clusters can 

potentially introduce additional electronic states within the bandgap (sub-bandgap) of the 

semiconductor.
73, 74

 Thus, it is possible to generate a new class of photocatalysts by employing 

subnanometer metal clusters to lower the bandgap of semiconductors, allowing utilization of a 

broader spectrum of sunlight.        

Prior studies concerning the behavior of TiO2 supported subnanometer clusters suggested 

that the preferable site for Ag clusters is the hollow site between twofold coordinated oxygen 

atoms for Agn(n=2, 4, and 8) adsorbed on anatase TiO2 (100).
75

 Aun(n=1-7) on the stoichiometric 

rutile TiO2 (110) surface prefers the site where the number of Au-O bonds is maximized.
76

 A 

recent study provided insights into the binding mechanism and geometry of Ptn(n=4-8) supported 

on rutile TiO2(110) surface.
77

 A DFT study of Ptn(n=1,2,7,10 and 37) clusters
78

 on anatase TiO2 

(101) surface suggested that island-like particle is the preferred configuration. Gong et al. studied 

the adsorption properties of Ptn and Aun (n=1-3) on TiO2 surfaces using combined experimental 

and computational methods.
79

 2-fold coordinated oxygen sites is suggested nucleation center for 

Ptn (n=1-3)
73

 and structural and electronic properties of bimetallic PdmAgn(m+n=2-5) were also 

investigated.
80

 Prior reports regarding sub-bandgap states focused on Ptn(n=1-3),
73

 Ptn(n=1-8),
81

 

and Ag clusters (dimer, tetramer, and octamer)
74, 75

 on anatase and rutile TiO2 surfaces.  
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The physical and chemical properties of single crystal are related to the dominating 

exposed surface structure,
82

 and this indicates the importance of understanding the behavior of 

different TiO2 surfaces. Nonstoichiometric TiO2 surfaces such as those with oxygen vacancies, 

bridge hydroxyl groups, and interstitial Ti atoms
83

 have been observed under room temperature. 

Studies regarding oxygen vacancies have been done on rutile (110) surface using theoretical 

method,
84, 85

 and on anatase (101) surface using combined experimental and theoretical 

approach.
79

 For anatase (101) surface, experiments tend to find oxygen vacancies in the bulk 

than on the surface.
86

 This implies that the pristine surface for anatase (101) is favored over 

vacant surfaces in the absence of adsorbates on the surface. Recent studies mentioned above 

have also shown promising catalytic results from Pt and Ag subnanometer clusters. Zhou et al. 

summarized the wide applications of Pt in heterogeneous catalysis, and  pointed out the concern 

about the high cost of Pt  metal.
78

 In this study, Agn and Ptn (n=2, 4, and 8) deposited on the 

perfect anatase TiO2 (101) surface were examined using ab initio calculations. Objectives of this 

study are to (i) develop an understanding of the binding mechanisms between adsorbed clusters 

and surfaces, (ii) study the geometry and its effect on adsorption energy as a function of cluster 

size, (iii) gain insights into the decoration/encapsulation phenomenon in catalysis, (iv) suggest 

indicators characterizing the sintering of subnanometer clusters deposited on support, and (vi) 

explore the behavior of sub-bandgaps introduced by subnanometer clusters on semiconductor 

and correlate sub-bandgap states with theoretical descriptors.  

3.2 Computational Details 

We studied Ag and Pt dimer, tetramer, and octamer (two dimensional (2D) and three 

dimensional (3D) geometries) on anatase (101) surface
82

 (see Figure 3.1). The surface Ti atoms 

contain five-fold coordinated Ti (5c-Ti), and six-fold coordinated Ti (6c-Ti) atoms. The surface 
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oxygen atoms comprise two-fold coordinated O (2c-O) and threefold coordinated O (3c-O), and 

the latter includes 3c-O in between five-fold coordinated Ti (3c-O(5Ti)) and in between six-fold 

coordinated Ti (3c-O(6Ti)) atoms.
78

 VASP (Vienna Ab Initio Simulation package) code
87-89

 was 

used with the Perdew–Burke–Ernzerhof (PBE) form of the generalized gradient approximation 

(GGA)
90

 functional for the exchange and correlation functional along with projector-augmented 

wave (PAW) pseudopotentials.
91

 A kinetic energy cutoff of 500 eV was used. Spin restricted 

calculations were carried out with an force tolerance of 0.01 eV/ Å. The standard DFT 

underestimates the bandgap due to DFT’s inability to accurately model the strongly correlated 

localized 3d electrons of the Ti atoms, and the calculation using DFT+U is suggested. It was 

reported that for transition metal cluster adsorbed on the TiO2 surface, the trends of the charge 

distribution and cluster stability are similar for calculations done with DFT and DFT+U.
80, 81, 92

 

DFT is used in this study and the band gap states reported should be used only for trending 

purposes. The (2x1) and (3x1) supercells of the anatase TiO2 surface with six trilayers were 

considered for dimer and clusters larger than dimers, respectively. Among the six trilayers, the 

bottom three layers were frozen, while the top three layers and subnanometer clusters were 

allowed to relax. The Monkhorst-Pack
93

 meshes of 4x4x1 k-point sampling in the Brillouin zone 

were used to study the adsorption of the clusters on the model surface except 6x6x1 was used for 

the density of state (DOS) calculations. The vacuum region between the slabs was set to 15 Å. 

The initial stable structures of clusters(clusters in the gas phase) were obtained as follows: 

initially using the Gaussian09 program package
94

 with B3LYP functional
95, 96

 and LanL2DZ 

basis set for the Ag and Pt atoms, and then VASP with the parameters mentioned earlier. The 

stable configurations of clusters on the model surface were then obtained via VASP from 

geometry optimization of the assumed initial adsorption configurations. 
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Total and atom-projected density of states (p-DOS) of the model systems within the 

energy range of interest (between the bottom of the valance band (VB) and the bottom of the 

conduction band (CB)), the density plot (DP), and d-band center and the standard deviation of d 

states
97

 were examined to study electronic structure interactions of the subnanometer clusters 

with the model surface. Climbing Image Nudged Elastic Band (CI-NEB)
98-100

 was used to 

determine the activation barrier and to suggest an encapsulation pathway. The zero position in 

each DOS and PDOS figure of this paper corresponds to the Fermi level. The density plot is the 

partial charge density within a specified energy range of the resonant peaks in the p-DOS 

calculated using VASP, and the density plots show equal density surfaces of 0.0005e/ Å
3
. The 

critical bond formation distance between the metal and the binding atoms is taken as 3.00 Å. The 

adsorption energy of the cluster was calculated as the difference between the total energy of the 

surface with the cluster adsorbed, and the sum of the energies of the free cluster and clean 

anatase TiO2 (101) surface. The more negative adsorption energy indicates most possible stable 

adsorption configuration on the model surface. 

3.3 Results and Discussion 

3.3.1 Binding Mechanism of Ag and Pt on TiO2  

Different initial adsorption configurations were relaxed in VASP to determine the 

possible stable configurations. (See Appendix B, Fig. B1-3). We explored (i) the stable cluster 

geometries and (ii) the favored cluster adsorption sites on the model surface (the cluster’s 

binding tendency toward the surface) as a function of the cluster size. Observations from the 

cluster geometry are first summarized and then examined by electronic structure calculation 

results. The two most stable configurations were studied. The trends of electronic properties 
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from both configurations are the same, so the results for only the most stable configurations are 

shown except for a few cases.  

3.3.1.1 Stable Geometry of Adsorbed Clusters on TiO2 

For Ag and Pt Dimers, the most stable Ag dimer configuration is shown in Figure 3.2a, 

where Ag1 is binding with two 2c-O atoms, while Ag2, located above the 5c-Ti, with one 2c-O. 

The second most stable configuration is shown in Figure 3.2b, with Ag dimer vertically adsorbed 

on one 2c-O. In the most stable mode, Ag-Ag bond length increased to 2.61 Å compared to the 

dimer in the gas phase (2.58 Å). When Ag dimer adsorbs in parallel to the model surface, the site 

that allows more interaction of Ag and 2c-O is favored. This is consistent with Ag dimer on the 

anatase TiO2 (100) surface, where the preferred site for Ag dimer is between 2c-O.
75

 Note that 

the most stable configuration of Ag dimer adsorbed on the anatase TiO2 (100) exhibited two 

separated Ag atoms lying between 2c-O atoms.
75

 We studied Ag dimer placed in parallel to the 

[010] direction and the dissociation of Ag2 was not observed. The optimum configuration turned 

out to be the same as the most stable configuration. We believe this is due to the difference of the 

surface structures of each anatase(100) and anatase(101), the former having longer distance 

between 2c-O atoms along [010] direction than that of the latter. Moreover, the converged 

geometry from the assumed initial configurations reveals that 5c-Ti helps to stabilize the 

horizontal adsorption of Ag dimer on the surface, while in the case of vertical adsorption 5c-Ti 

does not have a significant influence.  

In the case of Pt dimer, the most stable configuration is shown in Figure 3.2c, reported as 

second stable mode in the study of Han and coworkers.
73

 Pt2 is located in between the 2c-O and 

5c-Ti atoms, while Pt1 is located above 3c-O (5Ti). The distance between the bridging 2c-O 

atoms was increased from 3.82 Å to 4.08 Å in the direction parallel to [010]. This increase was 
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also found in the second most stable configuration shown in Figure 3.2d, each Pt atom pushing 

the bridge oxygen, from 3.82 Å to 4.85 Å. To sum up, Pt dimer tends to be attracted by 2c-O, 3c-

O, 5c-Ti and 6c-Ti atoms, and the length of the dimer increases to maximize overlap with the 

surface atoms, and this agrees with the conclusion from Han et al.
73

 that Pt dimer either binds 

with 2c-O or 5c-Ti, and the length of Pt dimer increases significantly. Similar binding tendency 

of Pt dimer is reported on the rutile TiO2 (110) surface
101

 where the possible adsorption sites are 

between oxygen rows, and Pt-Pt bond increased by 0.24 Å.        

For Ag and Pt Tetramers, the two most possible stable Ag tetramer adsorption 

configurations are shown in Figure 3.3, a & b, respectively. From different initial 2D geometries, 

the converged Ag tetramers exhibiting 3D geometry are more stable than converged 2D Ag 

tetramers. This indicates 3D is the favored geometry for Ag tetramers adsorbed on the surface. 

The optimized geometry of Ag tetramer was also 3D on the anatase TiO2 (100) surface.
75

 Figure 

3.3a shows a pyramidal structure, each of the Ag atoms in the bottom triangle interacting with 

each 2c-O and Ag3 interacting with 5c-Ti. The stable adsorbed geometry of the second most 

stable mode (Figure 3.3b) is that Ag2 and Ag4 each binds with 2c-O, while Ag1 binds with two 

2c-O atoms. 

The most possible stable configuration of the Pt tetramer, Figure 3.3c, is a 3D geometry 

similar to a pyramid. In contrast to the Ag tetramer, the second most stable one, Figure 3.3d, 

remained a 2D geometry. This is different from the rutile TiO2 (110) surface, where stable 

geometry of the adsorbed Pt tetramer was reported mainly 2D and square like structure.
77

 The 

average distance between each interfacial Pt and 2c-O is 2.08 Å for the most stable configuration, 

while it is 2.13 Å for the second; the average distance between the binding Pt and surface Ti 

atoms for the former configuration is 2.57 Å, whereas it is 2.68 Å for the latter. It reveals that Pt 
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tetramer favors the site possessing most bonds of the Pt with surface Ti and 2c-O atoms, 

consistent with observations derived from the Pt dimer cases except for 6c-Ti’s more important 

role here. 

For Ag and Pt Octamers, shown in Figures 3.4 a&b are the two most stable Ag octamer 

configurations. The average distance between the binding Ag and the 2c-O is 2.25 Å for both 

configurations. The average distance between Ag and 5c-Ti atom is similar for both, 2.98 Å and 

3.04 Å. Ag octamer favors the parallelogram at the interface, and the sites assisting maximum 

binding of Ag atoms with 2c-O are favored along with 5c-Ti’s involvement. The major 

difference from the tetramer case is less involvement of 3c-O (5Ti). Note that among the two 

most stable configurations, we find that the top layer of the Ag octamer affect the adsorption 

energy, which numerically are -1.30 eV and -1.28 eV.  

For Pt octamer, the most stable configuration (Figures 3.4c) has five bonds of Pt with 

surface Ti atoms ( ̴2.74 Å) and three bonds with 2c-O atoms ( ̴2.08 Å), while the second most 

stable(Figures 3.4d) configuration has three bonds of Pt with surface Ti atoms ( ̴2.72 Å) and four 

bonds with 2c-O atoms( ̴2.05 Å). Similar to Ag octamer adsorption, the parallelogram structure 

is the favored interfacial shape. In addition to 2c-O and surface Ti atoms, 3c-O (5Ti) atom shows 

tendency to bind with Pt octamer, as revealed from the average distance of 2.11 Å between Pt 

and 3c-O (5Ti) (Figure 3.4c).            

3.3.1.2 Binding Tendency of Clusters on TiO2 

For Ag Dimer, Tetramer, and Octamer, to investigate the binding tendency of the 

considered clusters toward the stoichiometry anatase TiO2 (101) surface, p-DOSs of the most 

stable adsorption configuration in each case within the energy range of interest were examined, 

as shown in Figures 3.5a-c. The peaks of Ag and O atoms show stronger resonance in the VB, 
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while those of Ag and Ti atoms show such resonance in the bottom of the CB. This suggests Ag 

clusters have stronger tendency to interact with the O atoms in lower energy levels and with Ti 

atoms in higher energy levels. Within the bandgap, both atoms show comparable interacting 

tendency. Most of the resonant peaks occur within the VB and this discloses O atom’s stronger 

tendency compared to the Ti atom to interact with the Ag clusters. 

Further examination of the p-DOS of surface 2c-O, 3c-O, and total O atoms of the most 

stable configurations of each Ag cluster, Figure 3.6a-c, it indicates that Ag clusters of interest 

have the disposition to bind with 2c-O, consistent with previous studies of Ag clusters on anatase 

TiO2 (100) surface.
75

 Moreover, there is also a tendency to bind with 3c-O, not obvious from the 

geometry observation alone. As revealed from insets in Figure 3.6, a & c, at energy levels within 

the bandgap, 2c-O shows stronger interaction with Ag clusters than 3c-O, while reverse trend is 

found for the remaining energy levels. This reveals that 3c-O atoms play an important role in the 

Ag dimer, tetramer, and octamer adsorption.  

DPs of significant resonant peaks in each Ag dimer, tetramer, and octamer systems were 

investigated in order to identify the surface atoms that have the tendency to bind with the Ag 

clusters. Selected DPs that suggest apparent bonding interactions are shown in Figures 3.5 a-c. In 

the case of Ag dimer, at -2.41eV and -3.45eV in Figure 3.5a, bonding orbitals formed by 2c-O 

can be clearly seen; for example, at -3.45eV Ag1 is interacting with 2c-O to form bonding orbital. 

At -2.41eV in the same figure, bonding orbital formed by 3c-O can also be seen. DP located at -

4.7eV in Figure 3.5b shows that both 2c-O and 3c-O (5Ti) form bonding orbital with Ag4 of the 

Ag tetramer. In the case of Ag octamer, DPs around -4.0eV and -4.9eV show the formation of 

bonding orbitals from 2c-O and Ag3, while around -4.9eV bonding orbitals from 3c-O (5Ti) and 

Ag1 can be seen. On the other hand, the bonding orbital formed from 5c-Ti and 6c-Ti atoms 
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were scarce, with mainly 5c-Ti interacting around Fermi level, as seen in DPs around 0eV in 

Figure 3.5a-c. One possible reason for 6c-Ti’s lack of involvement is due to its inward position 

on the model surface. The size, shape, or orientation restrictions of its atomic orbitals with 

respect to those of each HOMO of Ag clusters at each energy level are also possible reasons. 

This leads to insubstantial orbital overlaps and hence bonding orbitals are not able to form. The 

observations of DPs confirm that Ag clusters tend to bind with surface O in the lower energy 

range while with surface Ti in the high energy range. Moreover, as the cluster size increases 

from two to eight, the binding dispositions of the surface atoms with the Ag clusters do not vary.  

From our investigations of the DPs regarding the two most stable adsorption 

configurations of the Ag octamer, bonding orbitals involving 3c-O (5Ti) atoms are seen, but 

overall they are a minor population. This could be explained by the restricted freedom of Ag 

atoms in the bottom layer of Ag octamer. In Figure 3.4a, for example, the interactions between 

the Ag atoms in top layer and Ag3/Ag4 restrict the movements of Ag3/Ag4 in [101̅] direction 

and prevent the interaction with the 3c-O (5Ti). Comparing angles, Ag3 is at an angle of 100.94° 

with 2c-O and 6c-Ti in Figure 3.4a, while Ag4 is at 97.25° with 2c-O and 6c-Ti as shown in 

Figure 3.3a. In Figure 3.3a, there is only one Ag atom in the top layer, so there is less restriction 

upon Ag4 (bottom atom) to move toward 3c-O (5Ti), leading to the smaller angle; similar 

observations was also observed in the second most stable configuration. Therefore, when the Ag 

cluster becomes a 3-D structure, the top layer of the cluster may affect the Ag cluster adsorption 

by restricting the movement of bottom binding atoms.  Besides, Ag1, Ag2, Ag3 and Ag4 in 

Figure 3.4a constitute the pyramid similar to Figure 3.3a, which suggests the Ag dimer, tetramer, 

and octamer can be used as the building blocks for larger size Ag clusters.  
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As the cluster size increases to eight, the HOMOs of the Ag clusters would cover more 

area of the surface and this broadens the ways of its interactions with the surface atoms. Hence, 

while not crucial in the binding tendency for Ag dimer, 3c-O (5Ti) also plays an important role 

in the Ag tetramer adsorption. In summary, the Ag dimer adsorption on the anatase TiO2 (101) 

surface tends to be determined by the 2c-O with minor contribution from 5c-Ti. For Ag tetramer, 

the favored adsorption sites can be revealed by the maximum orbital overlaps of Ag tetramer and 

surface 2c-O/3c-O (5Ti) along with some contribution from 5c-Ti. In the case of Ag octamer, the 

favored adsorption sites can be suggested by the maximum orbital overlaps of Ag tetramer and 

surface 2c-O along with 5c-Ti’s involvement. Also, surface 2c-O is suggested the favored 

nucleation centers for Ag clusters on the anatase TiO2 (101) surface. 

Moreover, the binding tendency for Ag tetramer leads to an explanation for the geometry 

of the second most stable mode (2D to 3D). Consider the scenario of Ag3 lying on the same 

plane of Ag1, Ag2, and Ag4. In this layout, due to the repulsions between the Ag atoms, the 

ability of the tetramer to bind with 3c-O (5Ti) is mitigated, leading to orbital overlaps consisting 

of each Ag and 2c-O. However, as seen from the DP around -3.75eV in Figure 3.6d, movement 

of Ag3 to the top layer enables the orbital overlaps between Ag4 and the closest 3c-O (5Ti). This 

is also supported by the optimized angles of Ag4, 2c-O, and 6c-Ti:  97.95° compared to the 

initial angle of 103.44°. The interaction of Ag1 with two 2c-O atoms in the final configuration 

compensates for the loss of the interaction of Ag3 with one 2c-O in the initial configuration. 

Therefore, the final configuration not only possesses four bonding interactions with 2c-O, but 

also enhances the tetramer’s bonding with 3c-O, allowing the maximum overlaps between 

orbitals of 2c-Os or 3c-O (5Ti) and HOMOs of the Ag tetramer. The orbital overlaps explain the 

geometry change and this is consistent with the work by Chretien and coworkers.
76

 Note that 
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though Figure 3.3b has more number of Ag-O bonds than that in Figure 3.3a (6 vs. 5), the latter 

has shorter average distance (2.39 Å) than the former (2.46 Å). This suggests that bond distance 

is also an important factor in the Ag tetramer adsorption on the model surface. 

For Pt Dimer, Tetramer, and Octamer, the P-DOSs of the most stable adsorption 

configuration of Pt dimer, tetramer, and octamer systems within the energy range of interest are 

given in Figure 3.7a-c. The resonant peaks suggest that Ti and O atoms possess similar 

inclinations to interact with the Pt clusters over the indicated energy range, with the peaks 

located mainly between the very top of the VB and the Fermi level of the system.  

P-DOSs of surface 2c-O, 3c-O and total O atoms, and of surface 5c-Ti, 6c-Ti and total Ti 

atoms of the Pt dimer, tetramer, and octamer systems are shown in Figure 3.8a-f, respectively. 

2c-O and 3c-O atoms show comparable interacting tendency to bind with the Pt clusters within 

the very top edge of the VB and Fermi level(see inset in Figure 3.8c), while 3c-O shows stronger 

inclination within most of the VB. In contrast, 5c-Ti and 6c-Ti generally show similar interacting 

tendency over the indicated energy span. Small exceptions are found within the bandgap of Pt 

tetramer and octamer systems, where 5c-Ti shows stronger binding tendency than 6c-Ti in the 

lower energy part of the bandgap, while reverse is true in the higher energy part of the bandgap.  

Similarly, DPs (shown in Figure 3.7 and Figure 3.8) from selected resonant peaks of Pt 

dimer, tetramer, and octamer systems were studied to determine the key surface atoms 

interacting with Pt atoms. In Pt dimer system, 5c-Ti is the major atom to form bonding orbitals 

with Pt dimer (from DPs at -0.04eV in Figure 3.8a, -0.34eV, and -0.80eV in Figure 3.7a). 6c-Ti’s 

contribution is missing for the reason mentioned earlier: the size, shape, or orientation 

restrictions of its atomic orbitals with respect to those of each HOMO of Pt dimer at each energy 

level, leading to insufficient orbital overlaps. This can be illustrated by examining the DP at -
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1.02eV in Figure 3.8d; the shape and orientation of 𝑑𝑧2  orbital of 6c-Ti does not facilitate 

sufficient overlap with the orbital of Pt2 at that energy level. For the surface O atoms, 2c-O and 

3c-O generally does not form bonding orbitals with Pt dimer. Only one was observed at -0.34eV 

and is from 2c-O’s involvement. From the DP at -1.02eV, the orientation of the P orbital of 3c-O 

restricts its appreciable overlap with HOMO of Pt dimer. Therefore, though geometry 

observations reveal 3c-O and 6c-Ti’s strong interactions with the dimer, they are not the key 

atoms to affect the dimer adsorption. We conclude that 5c-Ti(mainly) and 2c-O are key atoms for 

the Pt dimer adsorption consistent the work of Han and coworkers.
73

   

In addition to 5c-Ti, 6c-Ti also contributes to bonding orbitals with the Pt tetramer. This 

can be seen in DPs around -0.81 eV and -1.78 eV in Figure 3.7b, which shows Pt3 and Pt4 

forming bonding orbitals with 5c-Ti and 6c-Ti, respectively. As for the surface oxygen, bonding 

orbitals involved are primarily from 2c-O and is observed only in the second most stable 

adsorption configuration. From DPs at -0.05 eV, -0.25 eV, and -0.59 eV plotted in Figure 3.9, it 

can be seen that Pt1, Pt4, and Pt2 form bonding orbitals with 2c-O. This suggests that the 

geometry of the Pt tetramer is a factor of the formation of the bonding orbital.  We attribute the 

missing bonding contribution of 3c-O to the reasons mentioned above, and illustrated with the 

DP at -1.62eV in Figure 3.8e. Compared to the HOMO of the Pt tetramer at that energy level, the 

horizontal atomic orbital of 3c-O prevents the substantial overlap, but facilitate 3c-O’s bonding 

with the nearby 5c-Ti bonding atom. This also suggests that surface O contributes to the indirect 

bonding interaction through the neighboring bonding Ti atoms.  

Like Pt tetramer system, bonding orbitals with Pt octamer mainly consist of 5c-Ti and 6c-

Ti atoms as seen in DPs at -1.45eV in Figure 3.7c and around 0eV in Figure 3.8f, showing Pt5 

bonding with 5c-Ti and 6c-Ti, respectively. 2c-O’s contribution to the bonding orbital is not 
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common as seen in the top portion of the VB (DP at -2.41eV in Figure 3.7c), and 3c-O’s 

contribution is not observed. Therefore, though the 3c-O (5Ti) atom seems to affect the Pt 

octamer adsorption from the geometry observations, in fact, its effect is not significant. While 

the Pt octamer does not interact with the support directly on the rutile TiO2 (110) surface,
77

 there 

is a direct interaction of the Pt atom in the top layer of the Pt octamer with the surface atom of 

anatase TiO2 (101), as seen in DP at -0.16 eV in Figure 3.9d. The bonding interaction of Pt5 and 

6c-Ti would extend the orbital of 6c-Ti toward the top layer. Thus a bonding orbital consisting of 

top layer atom (Pt6), Pt5 and the 6c-Ti is formed. This bonding participation would bring the top 

layer atoms close to the model surface. The distance between Pt6 and the 6c-Ti below was 

reduced from the initial 5.29 Å to 4.38 Å. This effect should also be considered as a factor in 

geometry change during the adsorption. This means that the atoms in the top layer would not 

only restrict the freedom of the binding atoms, but are also involved in the bonding with the 

surface atoms.        

In summary, for Pt dimer, the binding favors maximum orbital overlap of Pt dimer with 

5c-Ti and some contribution from 2c-O. For Pt tetramer/octamer, all surface Ti affect the cluster 

adsorption with minor contribution from 2c-O atoms. We suggest surface Ti atoms are the 

favored nucleation centers for Pt clusters on the anatase TiO2 (101) surface. Furthermore, with 

the derived binding tendency for Pt tetramer, the geometry evolution of the second most stable 

configuration (2D remains 2D) of the Pt tetramer can be explained using the DPs shown in 

Figure 3.9a-c. When the Pt tetramer lies on the surface, significant overlaps of its HOMOs with 

orbitals of the surface atoms easily formed without further change in the geometry. The 

difference between the second most stable configurations of Ag and Pt tetramer indicates that the 
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shape and orientation of the HOMOs of the metal cluster is a factor in determining the 

interaction behavior of the metal cluster on the model surface.  

3.3.2 Issues Related to Catalysis and Photocatalysis 

3.3.2.1 Encapsulation/Decoration  

Encapsulation/decoration of metal nanoparticles reduces the catalytic property of the 

catalyst owing to occlusions of the deposited metal nanoparticles by the support during reduction 

at high temperatures. Encapsulation was observed for Pt/rutile(110) when temperature increased 

to 450K;
102

 another study reported 270°C for the same system.
103

 Pushkarev et al.
104

 summarized 

several classic examples and a commonly accepted reason: the surface tension.  

We consider one situation in which the cluster deposited on the support rotates and 

diffuses as the temperature is increased until one atom of the octamer intruding into the hollow 

site between the 2c-O atoms (see Appendix B, Fig. B4). Both Ag and Pt octamers were studied. 

The Ag octamer converged to the configuration similar to Figure 3.7, a & b, whereas the Pt 

octamer converged to the configuration corresponding to a rough model of the preliminary step 

for encapsulation, Figure 3.10, image 10. In this image, the oxygen atoms seem to start migrating 

onto the Pt octamer with an average distance increase of the 5c-Ti and 6c-Ti atoms from initial 

2.90 Å to final 3.26 Å, indicating Pt octamer’s tendency to peel the surface atoms. The Pt cluster 

has a strong tendency to bind with surface Ti atoms, so the bonds between surface Ti and O 

atoms would be weakened. The failure to see the reconstructed support surface in the Ag octamer 

case reveals that the encapsulation is likely to happen for the higher reactive metal clusters (high 

adsorption energy), Rh or Pt on CeO, TiO2…etc.
105

 and others.
104

 NEB studies summarized in 

Figure 3.10 shows a possible pathway for rotation (Image 1-5) and diffusion (Image 5-9) of the 

deposited cluster when the temperature is increased. This pathway suggests that the temperature 
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increase facilitate mainly the rotation (an energy barrier estimated at 2.59 eV) and diffusion of 

the cluster on the support surface before encapsulation activation.  

3.3.2.2 Sintering of Size Selected Ag and Pt Clusters  

Sintering often occurs for metal clusters deposited on support material, resulting in a 

change in the size of the initially deposited clusters and this affects the catalytic reactions.
106

 

After depositing the size-selected ultra-small metal clusters on metal oxide surface, some of the 

clusters tend to aggregate to form larger clusters.
64, 65, 79, 107

 For example, among Aun
+
(n=1-8), 

sintered clusters are found in the deposition of Au1
+
 on the rutile TiO2 (110) surface at room 

temperature, which reveals Au monomer’s high mobility on this surface.
64

 On the same surface 

and temperature, among Agn
+
(n=1-3), Ag monomer and dimer were also found to form sintered 

clusters.
65

  

The low adsorption energy has been used to explain Au’s high probability to form large 

clusters on step edges, and the observation of Pt monomer on the terraces of the anatase TiO2 

(101) surface.
79

 In addition to the adsorption energy, the number of stable configurations (local 

minimums from the anatase TiO2 (101) surface) is also suggested as an indicator of sintering 

tendency. A local minimum on the model surface suggests a site for the subnanometer cluster to 

adsorb on the surface. Large number of local minima indicate that there are many anchoring sites 

for such clusters, which reduce the mobility of the clusters and hence their agglomeration. The 

adsorption energies of two most stable configurations of the Ag and Pt dimer, tetramer and 

octamer, and the identified number of the local minima are reported in Table 1 incorporating 

previous results of Ag and Pt monomers and Pt trimer. 
73, 80

 

The number of local minimum of Ag dimer, 2, reveals that most of Ag dimers tend to 

diffuse and gather in those two areas on the model surface. On the contrary, the higher number of 



34 
 

Ag tetramer and octamer (7 and 4, respectively) indicate that these Ag clusters tend to anchor on 

more regions on the anatase TiO2 (101) surface compared to the Ag dimer case. This reveals their 

mitigated mobility on the model surface, and less tendency for sintering. Among Ag monomer, 

dimer, tetramer, and octamer, Ag monomer and dimer have lower adsorption energies and lower 

numbers of local minima. The adsorption energy seems to form two groups: one group for 

monomers and dimers with lower adsorption energy, and the other group for tetramers and 

octamers with higher adsorption energy. The sintering probability of Ag clusters considered 

seems to reach a plateau with Ag tetramer. It can be suggested that when depositing ultra-small 

Ag clusters in the range of Ag monomer to octamer, it is very likely for Ag monomer and Ag 

dimer to sinter while the size of Ag clusters above tetramer is less likely to. Compared with the 

experimental work of Ag𝑛
+ (n=1-3) landing on rutile TiO2 (110) surface, in which Ag monomer 

and dimer were found to sinter,
65

 our evaluation give a reasonable prediction for the sintering 

tendency of Ag monomer and dimer on the anatase TiO2 (101) surface. Likewise, Pt clusters of 

interest overall show higher adsorption energies than those of the Ag clusters and demonstrate 

another level of identified number of local minimum. Therefore, it can be suggested that there is 

less likelihood for their sintering except for Pt monomer. 

3.3.2.3 Sub-Bandgap of Photocatalyst 

The occurrence of metal induced states within the bandgap were reported in Ag and Pt 

subnanometer clusters on anatase or rutile TiO2 surfaces using PBE-PW/PBE-LOCA,
75

 PW91-

PAW,
81

 PBE-PAW,
101, 108

 and PW91-PW.
73

 The number of the induced states within the 

bandgap is in proportion to the size of Pt clusters deposited on perfect and reduced rutile 

TiO2(110),
81, 101

 and the induced states would tend to form a continuous band as the cluster size 

increases from 1 to 8 atoms. In the case of a Pt cluster consisting of 37 atoms on the anatase TiO2 
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(101) surface: a continuous band was detected.  Muhich et al. suggested the continuous band 

leads to the formation of the recombination center for electron and hole pairs, which is 

detrimental to photoactivity.
109

  

Our results of p-DOSs of Ag and Pt dimer, tetramer, or octamer (Figure 3.5 and 3.7) also 

show metal induced states within the bandgap. Furthermore, there appears to be a correlation 

between d-band center of the transition metal clusters and the formation of such induced states 

within the bandgap. The d-band center, the average energy of the metal valance d-bands, has 

been found to be a useful indicator for the adsorption energy of the adsorbates on 3d transition 

metals.
110

 In Table 2, we report the d-band center of clusters in the gas phase and of clusters 

deposited on the model surface. Both sets of data show similar trends except for Pt tetramer case. 

This suggests that the d-band center of the deposited clusters is very similar to that of the clusters 

in the gas phase; the latter is easily obtained from low cost calculations.  

Comparing the absolute d-band center of Ag and Pt clusters in the gas phase and the 

calculated bandgap value 1.9 eV (comparable to other reported value 1.94 eV
111

), the d-band 

centers of Pt clusters are smaller than or close to the bandgap value, while those of Ag are at 

most 1 eV off. This suggests that when the absolute value of d-band center is smaller than or 

close to the bandgap value, the d-band center is more shifted to the right, locating more likely 

within the bandgap and higher chance to induce those induced states. The lack of the induced 

states in Ag tetramer model is noticeable from this conclusion. The standard deviation (estimated 

as 2.5 half width for the d-band at half the maximum height) of the d-band of the cluster is also 

an indicator for the formation of the continuous band within the bandgap of the system. A low 

standard deviation suggests a tendency for the d states to locate around the d-band center. As 

shown in Table 2, larger standard deviations of the d-band centers of Pt group correlate with the 



36 
 

wider distributions of induced states within the bandgap. Those of Ag group have on average 

smaller values of standard deviation. 

Examinations of the p-DOSs of surface O and Ti atoms of Ag clusters and Pt cluster 

models in Figure 3.6 and 3.8 reveal that the surface O and Ti atoms primarily contribute to the 

formation of the induced states within the bandgap. Looking at the p-DOSs of s, p, and d states 

of Ag and Pt octamers of the most stable configurations within the bandgaps as shown in Figure 

3.11, it indicates the important role of d-states for such induced states. The d states are primarily 

involved in the formation of the induced states especially for Pt octamer. Observations of DPs 

located within the bandgap in Figure 3.7a-c suggest that the Pt d states primarily interact with the 

surface Ti atoms to form bonding orbitals, resulting in such induced states consistent with 

previous studies.
61, 112

 These observations are consistent with using d-band center as indicator of 

the sub-bandgap formation. Note that the larger d-band centers of Pt clusters correlates with their 

d states locating closer to the Fermi level (within the bandgap), which increase the probability for 

Pt clusters to induce electronic states within the bandgap.  

In summary, the formation of the induced states by Pt, Ag or other metal clusters within 

the bandgap of the model systems is indicated by the comparison between the bandgap value of 

the semiconductor and the absolute values of d-band centers of the clusters in the gas phase. If 

the d-band center is smaller than or close to the bandgap, it is very likely that the sub-bandgap 

states will exist.  

3.4 Conclusions 

The surface atoms that interact most with Ag cluster adsorptions on the anatase TiO2 (101) 

surface are 2c-O and 3c-O atoms with a smaller contribution from 5c-Ti. Pt clusters tend to 

interact most with surface Ti with minor interaction with 2c-O. An important factor determining 
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the binding characteristic is the orbital overlap. Ag clusters tend to favor the sites where 

maximum orbital overlaps occur with the following combinations: 2c-O for dimer and octamer, 

and 2c-O/3c-O (5Ti) for tetramer along with the incorporation of the 5c-Ti. In case of Pt clusters 

the favored surface atoms are: 5c-Ti for dimers, and all surface Ti for tetramers and octamers 

with minor contribution from 2c-O. These represent 2c-O and Ti favored nucleation centers for 

Ag and Pt clusters, respectively, on the anatase TiO2 (101) surface. We found tetramer as the 

structural transition size for 2D to 3D for both Ag and Pt clusters. The top layer of the octamers 

not only restricts the movement of atoms in the bottom layer to bind with the model surface, but 

also directly contributes to the interaction with the model surface. The stable geometry of the 

adsorbed Ag and Pt octamer is a parallelogram structure at the interface. The structure of the Ag 

and Pt dimer, tetramer, and octamer on the surface can be suggested as the building blocks for 

larger size clusters.       

The behavior of Pt octamer on the anatase TiO2 (101) surface was explored to gain 

insights into decoration/encapsulation of metal clusters deposited on support. A possible 

explanation is the tendency to achieve maximum orbital overlaps of the cluster and the surface 

atoms of the model surface. No reconstructed support surface was observed in the Ag octamer 

suggesting that encapsulation is likely to happen for more reactive metal clusters. NEB study 

suggests a possible pathway for encapsulation. When temperature is increased, the energy is used 

to overcome the energy barrier of rotation and/or diffusion of the clusters on the support. The 

adsorption energy and the number of stable cluster adsorption configurations suggest that Agn 

(n=1-3) have a tendency to sinter on the anatase TiO2 (101) surface, while Agn (n=4-8) do not. 

On the same surface, Pt n (n=2-8) do not have a tendency to sinter, Pt monomer being an 

exception. By comparing the bandgap of the semiconductor and d-band center of the cluster in 
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the gas phase, it is very likely that the sub-bandgap will be created for absolute values of d-band 

center smaller than or closer to the bandgap value. In addition, smaller standard deviation of the 

d-band center suggests the maintenance of the semiconductor nature of the subnanometer based 

photocatalysts.  

The variation of the surface electronic structure is one factor determining the chemical 

and physical properties of the catalyst. Given a composite structure of the subnanometer metal 

cluster deposited on the semiconductor support, the d-band center shifts, leading to the formation 

of the sub-bandgaps and this in turn may allow photocatalytic reactions that utilize a larger 

fraction of photons in the solar spectrum. Investigations of the interactions of the subnanometer 

Ag and Pt clusters and the anatase TiO2 (101) surface from a molecular point of view shed light 

on the behavior of subnanometer metal clusters deposited on the support. This will be useful in 

the design of promising subnanometer metal clusters based catalysts and photocatalyts.  

 

 

 

 

 

 

 

 



39 
 

 

Figure 3.1 The perfect anatase TiO2(101) surface, Ti and O are represented by blue and red, 

respectively. 

 

 

Figure 3.2 The most (1
st
) and second most (2

nd
) stable dimer adsorption configurations and their 

structural parameters on the anatase TiO2(101) surface: (a)/(c) 1
st
 and (b)/(d) 2

nd
 stable Ag/Pt 

dimer systems, respectively( Ti in blue, O in red, Ag in silver and Pt in green). 
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Figure 3.3 The most (1
st
) and second most (2

nd
) stable tetramer adsorption configurations and 

their structural parameters on the anatase TiO2(101) surface: (a)/(c) 1
st
 and (b)/(d) 2

nd
 stable 

Ag/Pt tetramer systems, respectively( Ti in blue, O in red, Ag in silver and Pt in green). 

 

 

Figure 3.4 The most (1
st
) and second most (2

nd
) stable octamer adsorption configurations and 

their structural parameters on the anatase TiO2(101) surface: (a)/(c) 1
st
 and (b)/(d) 2

nd
 stable 

Ag/Pt octamer systems, respectively( Ti in blue, O in red, Ag in silver and Pt in green). 
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Figure 3.5 P-DOSs (Ti, O, and Ag) & density plots of the most stable adsorption configuration of 

Ag clusters: (a) dimer, (b) tetramer, and (c) octamer. The inset shows the density plots at 

corresponding positions: (a) 0, -2.41, and -3.45eV, (b) 0 and -4.7eV, and (c) 0, -4.0, and -4.9eV. 
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Figure 3.6 P-DOSs (surface 2c-O, 3c-O and total O) of the most stable adsorption configuration 

of Ag clusters: (a) dimer, (b) tetramer, and (c) octamer. (d) Density plot at -3.75eV of the second 

most stable Ag tetramer adsorption configuration. The inset shows the detailed p-DOSs within 

the bandgap.   

 

 

 

 

 

E-Ef(eV) 

D
en

si
ty

 o
f 

st
at

es
 (

st
at

es
/e

V
) 

-6 -5 -4 -3 -2 -1 0
0

20

40

60

80

 

 

O

2c-O

3c-O

(b) 

(c) 

(d) 

-6 -5 -4 -3 -2 -1 0
0

20

40

60

80

 

 

O

2c-O

3c-O

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
0

1

2

3

4

 

 

-6 -5 -4 -3 -2 -1 0
0

20

40

60

80

 

 

O

2c-O

3c-O

(a) 

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
0

2

4

6

8

10

 

 

(c) 



43 
 

   

Figure 3.7 P-DOSs (Ti, O, and Pt) & density plots of the most stable adsorption configuration of 

Pt clusters: (a) dimer, (b) tetramer, and (c) octamer. The inset shows the density plots at 

corresponding positions: (a) -0.34 and -0.80eV, (b) -0.81 and -1.78 eV, and (c) -1.45 and -

2.41eV. 
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Figure 3.8 P-DOSs & density plots of the most stable adsorption configuration of Pt clusters: 

surface 2c-O, 3c-O and total O of (a) dimer, (b) tetramer, and (c) octamer; surface 5c-Ti, 6c-Ti 

and total Ti of (d) dimer, (e) tetramer, and (f) octamer. Density plots at corresponding positions 

are presented in the insets of (a) 0.04eV, (d) -1.02eV, (e) -1.62eV, and (f) 0eV. The inset in (c) 

shows the detailed p-DOSs with the bandgap. 

 

 

Figure 3.9 Density plots of the second most stable Pt tetramer configuration at (a) -0.05eV, (b) -

0.25eV, and (c) -0.59eV, and of the most stable Pt octamer configuration at (d) -0.16eV. 
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Figure 3.10 A possible pathway for the encapsulation from a stable Pt octamer adsorption 

configuration (Image 1). Image1 - 5 and 5 - 9 represents rotation and diffusion, respectively. 

Image 10 is the crude model of the early step of encapsulation (Image 9 is a relaxed 

configuration of the assumed initial configuration). 
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Figure 3.11 P-DOSs of the adsorbed Ag (top) and Pt (bottom) octamers in the most stable Ag 

and Pt octamers adsorption configurations. 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 
 

Table 3.1 Adsorption energy of the first two stable configurations of Ag and Pt clusters on the 

anatase TiO2(101) surface, and the number of local minimum in each system. 

  

Monomer Dimer Trimer Tetramer Octamer 

Ag Pt Ag Pt Pt Ag Pt Ag Pt 

Adsorption 

energy of 1
st

/2
nd

 

(eV) 

-0.70
a

/ 

-0.13
a

 

-2.84
b

/ 

-2.25
b

 

-0.70/ 

-0.45 

-2.87/ 

-2.35, 

-2.67
 b

/ 

-2.53
 b

 

-3.08
 b

/ 

-2.99
 b

 

-1.49/ 

-1.44 

-4.29/ 

-3.94 

-1.30/ 

-1.28 

-4.10/ 

-3.97 

Number of 

local minima 
2

a 

 3
 b

 2 
5, 

6
b

 
6

b

 7 7 4 4 

  

  a
 MS CASTEP GGA/PW91.

80
 
b
 VASP GGA/PW91.

73
  

 

Table 3.2 d-band center and standard deviation of d states of the Ag and Pt clusters in the gas 

phase and deposited on the model surface. 

  

Ag d-band center (eV) (Standard 

deviation) 

Pt d-band center (eV)  

(Standard deviation) 

  Free Deposited Free Deposited 

Dimer -2.21(0.50) -2.46(0.72) -1.18(1.31) -2.05(2.07) 

Tetramer -3.20(0.70) -4.91(0.97) -1.81(1.49) -2.66(1.92) 

Octamer -3.02(0.76) -4.01(0.88) -2.05(1.52) -2.32(1.80) 
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CHAPTER 4: CO2 ADSORPTION ON ANATSE TIO2 (101) SURFACES IN THE 

PRESENCE OF SUBNANOMETER AG/PT CLUSTERS: IMPLICATIONS FOR CO2 

PHOTOREDUCTION
113

  

 

 

This chapter summarizes the investigations of CO2 adsorption on subnanometer Ag & Pt 

clusters/ TiO2 surfaces to gain understandings of clusters based photocatalysts for CO2 reduction. 

Using Density Functional Theory calculations, we show how CO2 adsorption on perfect and 

reduced anatase TiO2 (101) surfaces can be substantially modified by the presence of surface Ag 

and Pt octamer clusters. We find that adsorption is affected even at sites where the adsorbate is 

not in direct contact with the octamer, which we attribute to charge donation to CO2 from the 

Ag/Pt-modified surface, as well as an electrostatic competition between attractive (Ti-O) and 

repulsive (Ti-C) interactions. In addition, TiO2-supported Pt octamers offer key advantages that 

could be leveraged for CO2 photoreduction, including providing additional stable adsorption sites 

for bent CO2 species and facilitating charge transfer to aid in CO2
-
 anion formation. Electronic 

structure analysis suggests these factors arise primarily from the hybridization of the bonding 

molecular orbitals of CO2 with d orbitals of the Pt atoms. Our results show that for adsorption on 

TiO2-supported Pt octamers, the O-C-O bending and C-O asymmetric stretching frequencies can  

 

______________________________________________________________________________ 
Reprinted with permission from {Yang, C.-T.; Wood, B. C.; Bhethanabotla, V.; Joseph, B., CO2 Adsorption on 

Anatase TiO2 (101) Surfaces in the Presence of Subnanometer Ag/Pt Clusters: Implications for CO2 Photoreduction. 

The Journal of Physical Chemistry C 2014, 118, 26236-26248.}. Copyright {2015} American Chemical Society." 

(Refer to Appendix A) 
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be used as reliable indicators of the presence of the CO2
-
 anion intermediate, as well as to 

distinguish unique adsorption geometries or sites. Finally, we suggest a possible pathway for 

subsequent CO2 dissociation to CO at the surface of a reduced anatase TiO2 (101)-supported Pt 

octamer, which has a computed energy barrier of 1.01eV. 

4.1 Introduction  

Ever since Fujishima and Honda first demonstrated the use of TiO2 electrodes for 

photocatalytic water splitting in 1972,
114

 numerous researchers have extended the idea to 

applications such as photocatalytic degradation of environmental harmful species,
115

 and 

photoreduction of CO2 into light hydrocarbons.
116

 However, the efficiency of the photo-

conversion remains a weakness.
7
 One technique to improve the photo-efficiency is to deposit 

noble metal nanoparticles on the semiconductor surface.
18, 70

 The nanoparticles serve as 

cocatalysts to reduce the recombination of e-/h+ pairs, or as plasmonic particles to increase the 

concentration of photoexcited electrons.
71, 72

 However, cost is a concern for this technique; for 

example, Pt has proven to be an effective cocatalyst but is expensive and limited in supply. 

Doping the semiconductor with elements such as N
9, 10

 and Ag
11

 and introducing surface defects 

are other techniques for improving the photo-efficiency by reducing the bandgap, but they also 

increase the chances for recombination of e-/h+ pairs.
117

 

The addition of subnanometer metal clusters consisting of several atoms represents an 

alternative strategy that can substantially reduce the materials requirements associated with 

larger cocatalyst particles. Such clusters have shown enhanced catalytic activity for a variety of 

reactions such as direct propylene epoxidation,
21

 CO oxidation,
23, 25, 118

 and oxidative 

dehydrogenation of propane.
26

 The promotional effects are attributed to the dynamic structural 

fluxionality,
118

 larger fraction of under-coordinated surface atoms,
26

 and the interactions between 
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deposited cluster and the support.
28

 In addition, such clusters can potentially introduce extra 

electronic states within the bandgap (sub-bandgap states) of the semiconductor, thereby reducing 

the optical absorption gap.
73, 74, 119, 120

 

While TiO2 may not prove to be the optimal catalyst for CO2 photoreduction, TiO2-based 

materials continue to provide common settings to understand the chemistry of CO2 

photoreduction.
121

 One proposed mechanism starts with the absorption of an incident photon to 

form Ti
3+

- O
-
 sites, followed by the interaction of the Ti

3+
 atoms with CO2 to form CO2

-
, the 

latter being the first and key step of the reduction mechanism.
1, 7

 The adsorbed CO2
- 
then reacts 

with an H· radical to generate CO, HCO2H, CH2CO, CH3OH, and CH4. The success of the key 

step (reduction of CO2 to CO2
-
) relies on the geometry with which CO2 is adsorbed on the TiO2 

surface: the more bent the geometry of the adsorbed CO2 molecule, the easier the transfer of 

photoexcited electrons to CO2 to form the CO2
- 
anion.

122-124
 This is due to the decrease of the 

CO2 LUMO energy as the O-C-O bond angle decreases.
125

 Prior quantum mechanical 

calculations have investigated CO2 adsorption on the electronic ground or excited states of 

different surfaces of TiO2 clusters.
123, 126, 127

 More thorough studies have considered CO2 

adsorption on periodic TiO2 anatase (101) surfaces, including the effect of oxygen vacancies or 

interstitial Ti atoms at surface or subsurface sites.
122, 128

  

In this article, we extend previous work by using density functional theory (DFT) to 

examine the interplay between CO2 adsorbates and anatase TiO2 (101) surfaces in the presence of 

subnanometer Ag & Pt clusters, which we represent by octamers. The choice of surface was 

motivated by the fact that anatase is the dominant crystal structure of TiO2 in a commercial 

Degussa P25 photocatalyst (80% anatase and 20% rutile), and the (101) surface is the most stable 

anatase surface.
82

 In addition, scanning tunneling microscopy (STM) points to the existence of 
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various point defects such as oxygen vacancies, hydroxyl groups, and interstitial atoms, which 

may bring important effects to the interaction between the surface and the metal clusters;
79

 

accordingly, we consider the possible presence of a surface oxygen vacancy (i.e., reduced 

surface) in addition to the pristine anatase surface. 

Specifically, we frame our discussion according to four basic ingredients for designing an 

effective CO2 photoreduction catalyst (focusing here on the formation of key reaction precursors): 

(i) availability of binding sites, (ii) intermediate adsorption energy at those sites (too strong = 

traps; too weak = inactive), (iii) bent geometry of CO2, and (iv) localized charge transfer to CO2 

to facilitate CO2
-
 formation. We investigate the impact that adding Ag and Pt clusters to anatase 

surfaces has on each of these four factors. The geometry and energetics of CO2 adsorption are 

first examined in detail using electronic structure techniques. The CO2 adsorption modes are then 

correlated with calculated vibrational frequencies to provide a roadmap for interpreting and 

characterizing IR spectra. Finally, a possible dissociation mechanism of CO2 to CO (in its 

precursor state) on one of our tested surfaces is discussed. This understanding is intended to 

guide the design of promising subnanometer metal cluster/semiconductor catalyst frameworks 

for CO2 photoreduction. 

4.2 Computational Methods 

Titanium atoms on the anatase TiO2 (101) surface consist of 5-fold(5c-) and 6-fold(6c-) 

coordinated Ti atoms, whereas the surface oxygen atoms comprise 2-fold(2c-) and 3-fold(3c-) 

coordinated O atoms. The 3c-O atoms can be further decomposed into 3c-O between 5-fold 

coordinated Ti and between 6-fold coordinated Ti atoms.
78, 119

 In order to compare with the 

corresponding literature results,
122, 128

 the reduced surface is modeled by removing an oxygen 

atom from a bridge site (2c-O), resulting in conversion to 4c-Ti and fewer exposed 5c-Ti atoms. 
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The stable configurations of perfect and reduced surface supported Ag and Pt octamers were 

obtained by following the procedures from our previous work.
119

  

The DFT calculations were performed with the Perdew–Burke–Ernzerhof (PBE) 

functional of the generalized gradient approximation (GGA)
90

 using the VASP (Vienna Ab Initio 

Simulation package) code.
87-89

 The electron-ion interactions were modeled by the projector-

augmented wave (PAW)
91

 method. A kinetic energy cutoff of 500 eV was used for the 

wavefunctions, and energies were converged to 10
-5

 eV. Spin polarized calculation was 

incorporated in the geometry optimization, with the force convergence criteria on each atom set 

to < 0.01 eV/ Å. It is known that the bandgap of transition metal oxides is underestimated with 

the standard DFT due to its improper self-interaction cancellation built in, leading to inability to 

accurately model the strongly correlated localized 3d electrons of the Ti atoms. This, for example, 

fails to describe small electron-polarons formed on the anatase (101) surface, particularly on the 

reduced surface.
129, 130

 DFT+U approach is suggested to improve such localization deficiency. A 

test with DFT and DFT+U was done on Bader charge of configurations of CO2 adsorbed on 

reduced surface reported in this research (refer to Appendix B, Fig. B5 and Table B1). The value 

of U=3.5 eV is chosen according to the literature
128

 which gives comparable results to the 

experimental values. The effect of different U vales is tested following the work of Park et al.
131

 

It is shown that the charge distribution is comparable under both approaches for these two 

configurations. Some prior studies have also shown that for transition metal clusters
132, 133

 or 

adsorbates
134

 adsorbed on the perfect or reduced TiO2 surfaces, the trends of the charge 

distribution and cluster stability are similar with DFT and DFT+U methods. Nevertheless, the 

results in this study from standard DFT should be taken with a word of caution due to limitations 

of standard DFT calculations. 
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A 3x1 supercell of the anatase TiO2 surface with six trilayers was considered. Among the 

six trilayers, the bottom three layers were frozen, while the top three layers and metal clusters 

were allowed to relax. A Monkhorst-Pack 
93

 mesh of 2x2x1 k-points was used to sample the 

Brillouin zone for determining the adsorption geometry of CO2 on the model surfaces; this was 

increased to 6x6x1 for the density of states (DOS) calculations. The vacuum region between the 

slabs was set to 12 Å. The adsorption energy of CO2 was calculated as the difference between the 

total energy of the CO2 adsorbed on the model surfaces, and the sum of energies of the isolated 

CO2 and model surfaces. Within this definition, a more negative adsorption energy indicates 

more favorable adsorption.  

To study the electronic structure of the interactions of CO2 with the model surfaces, we 

computed atom-projected densities of states (p-DOS) within the energy range of interest (from 

the level of the bonding molecular orbitals of CO2 to 1 eV above the Fermi level), as well as 

density plots (DPs) with equal-density isosurfaces of 0.001e/ Å
3
. The zero energy position in 

each p-DOS figure within this work corresponds to the Fermi level. Charge population changes 

upon CO2 adsorption on the model surfaces were analyzed using Bader charge analysis.
135

 The 

climbing image nudged elastic band method (CI-NEB)
98-100

 (Γ point sampling and spin restricted) 

was used to investigate the mechanism of CO2 dissociation to CO. The vibrational frequencies 

were calculated using the frozen-phonon approach with a displacement of 0.015 Å for the C and 

O atoms of the CO2 molecule.  

4.3 Results and Discussion 

4.3.1 CO2 Adsorption on TiO2 Surfaces 

We begin with a discussion of CO2 adsorption on perfect and reduced anatase TiO2 (101) 

surfaces without Ag or Pt clusters. On the perfect anatase TiO2 (101) surface, three CO2 
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adsorption modes were identified: one linear (L1) and two bent (B1, B2) forms; on the reduced 

surface (Vo), six modes were obtained: one linear (LVo1) and five bent (BVo1-BVo5) forms. 

Among the adsorption modes, B1, B2, and BVo5 were found to be slightly metastable. The 

optimized geometries and corresponding structural parameters are given in Fig. B6 of Appendix 

B. Table 1 shows the corresponding adsorption energies, O-C-O angles of CO2, and changes in 

the Bader charge of the CO2 molecule and of its central C atom. Our computed configurations 

are almost the same as those reported by He et al. (using VASP with the PBE functional)
122

 and 

by Sorescu et al. (using VASP with PBE with corrections for the long-range dispersion 

interactions).
128

 Compared to the results obtained by He et al.,
122

 the trends in the adsorption 

energy and structural parameters for binding on the perfect surface are the same, though our 

adsorption energies are a bit weaker; this may be due to a different convergence criterion and 

supercell size. Compared to the study by Sorescu et al.,
128

 our converged configurations and the 

trends in the adsorption energy on both perfect and reduced surfaces are also quite similar, 

except for BVo4, for which we obtained a somewhat larger O-C-O angle. Note that the 

adsorption energy of LVo1 is comparable to the corresponding one reported by Wanbayor et 

al.,
136

 and the NEB and MD simulation suggested the desorption of CO2 from the reduced 

anatase TiO2 surface at room temperature. It is revealed that CO2 adsorption configurations 

reported in this research with adsorption energies around or below that of LV01 may desorb 

under realistic conditions.    

Comparing the energies in Table 1 to the geometries in Fig. B6 of Appendix B reveals 

site-specific trends of the binding mechanism. The O atom in CO2 tends to bind with surface Ti 

atoms, whereas the C of CO2 tends to bind with surface O atoms. Specifically, on the perfect 

surface, the preference is for the O atom of CO2 to bind with 5c-Ti, while on the reduced surface 
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it also binds with 6c-Ti. The latter effect is likely due to the greater exposure of 6c-Ti surface 

sites in the presence of the oxygen vacancy, which results from the vacancy-induced 

modification of the local surface structure. The O atom’s tendency to bind with both 5c-Ti and 

6c-Ti on a reduced surface is best illustrated by BVo1, in which it binds to both sites 

simultaneously; this is also the most energetically favorable of all of our tested configurations. 

The C atom in CO2 favors binding with 2c-O and 3c-O (5Ti) on the perfect surface, whereas on 

the reduced surface 3c-O (6Ti) also becomes possible (e.g., BVo3, for which the C-to-3c-O 

binding distance is 1.41Å).  

On average, the introduction of oxygen vacancies appears to have two key effects on CO2 

adsorption: first, it increases the number of possible CO2 binding configurations; and second, it 

enhances the adsorption strength on the surface. This second point is particularly evident when 

comparing the metastable B2 with the highly stable BVo2, which is analogous except for the 

removal of a bridging oxygen. The oxygen vacancy helps stabilize CO2 adsorption in BVo2, 

likely because CO2 gains electron density from the oxygen vacancy (0.088e). We emphasize that 

the negative charge accumulation at the C of CO2 is crucial to the formation of the CO2
-
 anion for 

CO2 photoreduction,
122

 and is particularly pronounced for BVo1 and BVo4 (0.827e and 0.421e, 

respectively). However, it takes energy to create oxygen vacancies, and this reveals the 

importance of subnanometer clusters which will be discussed below.  

4.3.2 CO2 Adsorption on TiO2 Supported Ag/Pt Octamers Surfaces 

Next, we discuss how the adsorption properties of CO2 are affected by the presence of the 

Ag and Pt octamers on anatase TiO2 (101), focusing on structural and electronic properties, the 

CO2 binding mechanism, and the associated vibrational properties. Particular attention is paid to 

two factors that are directly relevant for catalytic activity: first, the availability of viable surface 
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binding sites for CO2; and second, the bent geometry and charge accumulation on the adsorbate, 

which together facilitate CO2 activation. Note that some reconstruction of the octamer occurs 

during CO2 adsorption on both perfect and reduced surfaces; this is due to the fluxionality 

characteristic of the subnanometer metal cluster, which was discussed in our previous work on 

the adsorption of Ag and Pt dimers, tetramers, and octamers on the anatase TiO2 (101) surface.
119

 

4.3.2.1 Structural and Electronic Properties 

For Pt/Ag on perfect anatase (101) surface, we begin by considering CO2 binding on 

perfect (vacancy-free) anatase (101) surfaces with Ag and Pt octamers. The optimized 

configurations and structural parameters of CO2 adsorption for this case are given in Figure 4.1. 

The adsorption energy, O-C-O angle of CO2, and Bader charge difference of the CO2 molecule 

upon adsorption for each of the configurations of Figure 4.1 are reported in Table 2. In the 

presence of the Ag octamer, two bent (BA1 and BA2) and one linear (LA1) CO2 adsorption 

modes were found, as shown in Figure 4.1a-c. In the presence of the Pt octamer, four bent (BP1-

BP4) and one linear (LP1) CO2 adsorption modes were found, as shown in Figure 4.1d-h. The 

adsorption configurations can be broadly classified into two categories: those where CO2 binds 

directly to the TiO2 surface itself (BA2, LA1, BP4, LP1); and those where CO2 interacts 

appreciably with the metal cluster (BA1, BP1, BP2, BP3). 

For adsorption at TiO2 sites (with octamer present), a comparison of Tables 1 and 2 

makes it clear that the presence of Ag and Pt octamers affects CO2 binding even when there is no 

direct contact between the adsorbate and the metal clusters, i.e., when binding is directly on TiO2 

surface sites (BA2, LA1, BP4, LP1). Moreover, the effect of the Ag & Pt octamers on CO2 

adsorption at these sites varies depending on the orientations of the CO2 molecule.  
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To see this, consider the linear modes, LA1 & LP1 (Figure 4.1, c & h) and the bridge 

carbonate-like modes, BA2 & BP4 (Figure 4.1, b & g), which are similar to one another in terms 

of O-C-O angles of CO2 and binding distances. In comparison with analogous modes on the 

perfect surface without Ag/Pt (L1 and B2 in Fig. B7, a & c in Appendix B), the linear LA1 and 

LP1 have longer bond lengths between the O atom of CO2 and the surface Ti atom by up to 0.2 

Å (Fig. B7 in Appendix B and Figure 4.1), as well as weaker adsorption energies (refer to Table 

1 & 2). Conversely, the presence of Ag or Pt octamers stabilizes the metastable bent B2 

configuration, strengthening adsorption for the stable BA2 and BP4 bent configurations (which 

have nearly identical structural parameters).  

The Bader charge analysis in Table 2 indicates that the additional negative charge 

accumulated on the binding O atom of CO2 for LA1 (0.026e) and LP1 (0.061e) sustains binding 

with the surface Ti atom, similar to the value found for L1 on the undecorated surface (0.033e). 

BA2 and BP4 also show net significant electron accumulation in both O atoms of CO2 upon 

binding. However, though qualitatively consistent with B2 on the undecorated surface (Table 1), 

the magnitude of this accumulation is much greater for BA2 and BP4. Moreover, the electron 

accumulation on the O atoms of CO2 for BA2 and BP4 is not accompanied by any significant 

electron depletion on the C atom, indicating charge is being transferred from the substrate rather 

than internally redistributed within the CO2 molecule. This behavior may explain the 

transformation from the metastable B2 to stable BA2 and BP4 upon addition of Ag/Pt. The 

localized net charge at both O atoms of CO2 facilitates binding with the surface Ti atom, which 

agrees with the result reported by He and coworkers.
122

 The enhanced electron density in the 

CO2 adsorbate derives from the tendency of Ag & Pt octamers to donate electrons to the anatase 

(101) surface: our previous work suggests that Ag and Pt octamers have the tendency to donate 
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electron to the anatase (101) surface (1.075 and 0.450e).
119

 Similar trends have also been 

observed on model surfaces of Pt dimers on rutile TiO2 (110)
108

, Ag(2,4,8) on anatase (110)
137

, 

and Pt(1-3) on anatase (101)
73

. The enhanced CO2 adsorption phenomenon is similar to the 

observation that O2 adsorption on stoichiometric rutile TiO2 (110) becomes favored when 

electronic density is transferred from deposited small Au clusters to the oxide.
76

  

For adsorption at sites associated with octamers, the examination of the sites for which 

CO2 binds in direct contact with the Ag/Pt octamers (BA1, BP1, BP2, BP3) reveals two 

additional facts. First, we find that the presence of the Pt octamer exposes more additional CO2 

adsorption sites than does the presence of the Ag octamer (three for Pt vs. one for Ag). Second, 

CO2 tends to adsorb rather strongly on the Pt site.  

BA1 (Figure 4.1a) is the sole Ag octamer-associated CO2 adsorption site, in which CO2 

binds at the interface between the Ag octamer and the TiO2 surface with a distance of 2.26 Å 

between O(a) and the nearest Ag atom. Compared to analogous modes without the octamer (B1 

in Fig. B7 in Appendix B), there is an increase of the C-O bond length in CO2 by 0.04 Å; the O-

C-O angle of CO2 is also smaller. The elongation is attributed to the interaction of the Ag 

octamer with CO2, indicated by increased charge transfer to O(a) for BA1 (0.072e) compared to 

B1 (0.042e). The additional charge transfer also explains the increase in adsorption strength by 

0.33eV, and reveals the Ag octamer’s role in stabilizing CO2 on the surface in this mode.  

The three additional CO2 adsorption sites provided by the Pt octamer for bent-form CO2 

are BP1-BP3 (Figure 4.1d-f). BP1 represents CO2 adsorption at the interface edge of the Pt 

octamer and TiO2 surface. In this configuration, CO2 binds with 5c-Ti using one of its O atoms, 

while using C and the other O to bind with the Pt octamer. On the other hand, in BP2 and BP3, 

CO2 adsorbs solely on the Pt octamer, with no direct interaction with the anatase surface; notably, 
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these configurations are unique to Pt, with no analog for Ag. In BP2, the C atom of CO2 bridges 

two Pt atoms, each of which also interacts with a different O atom of CO2. In BP3, the CO2 

molecule uses C and one O to bind with one Pt atom.  

On average, adsorption on the three Pt sites is stronger than on the surface with supported 

Ag octamers or on the clean perfect anatase surface, which means that the supported Pt octamer 

surface will tend to enrich the adsorbed CO2 species. Moreover, BP1, BP2, and BP3 show a 

tendency for significant negative charge accumulation in the C atom of CO2 (0.599, 0.537, and 

0.374e, respectively), which is favorable for formation of the CO2
-
 anion. The charge 

accumulation can also be easily observed in the charge density difference of BP1 and BP2 (see 

Fig. B8 in Appendix B). Note that the O-C-O angle of CO2 decreases as the net charge transfer 

and the adsorption strength increase. In fact, the O-C-O angles of adsorbed CO2 in BP1 and BP2 

are close to the reported angles of the CO2
-
 anion based on experimental and theoretical results, 

127±8° and 138°, respectively.
122

 We point out that the C atom’s acquisition of additional 

negative charge is similar to the electronic behavior of adsorption modes found on clean perfect 

Zn2GeO4 (010) and (001) surfaces.
138

 This reveals that depositing subnanometer metal clusters 

can bring new electronic properties to a conventional photocatalyst such as TiO2, and that a Pt 

octamer deposited on perfect anatase (101) has the capability to activate the CO2 molecule. 

Notably, this behavior contrasts with CO2 adsorption modes on clean perfect anatase TiO2 

(101)
122

, perfect brookite (210)
139

, and perfect ceria (110)
140

 where no stable bent form of CO2 or 

net charge accumulation on C upon adsorption were found.  

For Pt/Ag on reduced anatase (101) surface, we consider CO2 binding on reduced anatase 

(101) surfaces (i.e., oxygen vacancy) with Ag and Pt octamers. Identified CO2 adsorption 

configurations and corresponding structural parameters for this case are given in Figure 4.2. The 
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adsorption energy, O-C-O angle of CO2, and Bader charge difference of the CO2 molecule upon 

adsorption for each of the configurations of Figure 4.2 are reported in Table 3. On the reduced 

surface with the Ag octamer, two bent (BAVo1 and BAVo2) and one linear (LAVo1) CO2 

adsorption configurations were found, as shown in Figure 4.2a-c. In the presence of the Pt 

octamer, six bent (BPVo1-BPVo6) and one linear (LPVo1) CO2 adsorption configurations were 

found, as shown in Figure 4.2d-j. As we did for the vacancy-free surface, we categorize the 

configurations into two categories: one where CO2 binds directly to the TiO2 surface (LAVo1, 

LPVo1, BAVo1, BPVo5), and another where there is direct interaction with the metal cluster 

(BAVo2, BPVo1, BPVo2, BPVo3, BPVo4, BPVo6). 

For adsorption at TiO2 sites (with octamer present), as we found for the perfect surface, 

the presence of the Ag or Pt octamer has an impact on TiO2 sites, even those that are not directly 

associated with the octamer. However, unlike the perfect surface case, there does not appear to 

be a significant dependence on the specific orientation of the adsorbed CO2 molecule. 

Again, some insight can be gained by comparing adsorption configurations on the 

reduced surfaces with Ag/Pt to analogous configurations on the reduced surfaces without the 

octamer. The linear LAVo1 and LPVo1 configurations (Figure 4.2, c & j) are similar structurally, 

and are closest to LVo1 for the octamer-free surface (Fig. B6d in Appendix B); nevertheless, 

these two sites show longer bonding lengths between O of CO2 and Ti atom by 0.38 Å and 0.29 

Å, and less than half the adsorption energy magnitude of the octamer-free surface. For these 

linear geometries, the net effect of the octamers on CO2 adsorption is therefore consistent 

between the reduced and perfect (vacancy-free) surfaces. The bent BAVo1 and BPVo5 (Figure 

4.2, a & h) geometries, which are almost the same in terms of adsorption configuration, are also 

less stable compared to the analogous mode on the reduced surface (BVo2 in Fig. B6f in 
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Appendix B). In other words, the presence of Ag and Pt octamers weakens the CO2 binding with 

the reduced surface in this configuration (in fact, BPVo5 becomes a metastable mode). 

Accordingly, the trend for the bent geometries matches that for the linear geometries, but is the 

opposite of the trend found in perfect surface-supported octamers. At first glance, this is curious 

given that the Bader charge analysis also shows negative charge localization at the binding O of 

the CO2 molecule upon adsorption in the LAVo1 (0.019e) and LPVo1 (0.033e) configurations. 

However, this accumulation is much less than what we observed for LVo1 on the octamer-free 

surface (0.060e), which is consistent with the relative decrease in adsorption energy, and with the 

increase in the binding distance of the O atoms of CO2 and the surface Ti atoms. We caution, 

however, that BAVo1 and BPVo5 show enhanced net charge transfer in the two binding O atoms 

compared to BVo2, but do not demonstrate a consistent trend in the adsorption energy; 

accordingly, significant charge transfer should be seen only as a rough guideline for predicting 

adsorption.  

For adsorption at sites associated with octamers, like the perfect surface with Pt/Ag, we 

find that more additional CO2 adsorption sites are introduced at the Pt octamer than at the Ag 

octamer (five for Pt vs. one for Ag); note that this difference between the two metals is even 

more pronounced than we saw with the perfect surface. We also find that although the reduced 

surface provides more binding sites at the octamer, the presence of the oxygen vacancy does not 

in general enhance the binding strength of CO2 with respect the Ag/Pt-decorated perfect surface. 

The lone Ag binding site, BAVo2 (Figure 4.2b), is a metastable adsorption site with the C 

atom of CO2 binding with 3c-O, and with one O atom of CO2 interacting with the Ag octamer at 

a distance of 2.36 Å while the other O atom fills the oxygen vacancy site. This configuration is 

similar to the corresponding mode on the reduced surface without Ag (BVo3 in Fig. B6g in 
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Appendix B), but it has a much smaller adsorption energy magnitude (by 0.65eV). This indicates 

that the Ag octamer’s presence mitigates the CO2 adsorption in this configuration. The net 

charge on the adsorbed CO2 is also quite different when the Ag octamer is present: the charge 

transfer to the O atom of CO2 in BAVo2 is almost double that in BVo3 (no octamer), while the 

charge transfer to the C atom is one fifth as large.  

Five additional adsorption modes were observed on the reduced surface-supported Pt 

octamer, two more than were found for the perfect surface-supported case. Configuration BPVo1 

(Figure 4.2d) can be compared to the perfect surface-supported BP1 (Figure 4.1d), since both 

sites involve CO2 adsorption at the interface edge with comparable binding distances of CO2 to 

the Pt octamer (albeit with a slight distance decrease by 0.11 Å of the O atom binding to the 

surface Ti and a smaller O-C-O angle by almost 2.8°). Configuration BPVo2 (Figure 4.2e) is 

similar to BP3 (Figure 4.1f), and mainly involves an interaction with one Pt atom in the top layer; 

again, both of these configurations possess comparable CO2 binding parameters except for a 0.16 

Å shorter distance between O of CO2 and the Pt atom. BPVo3 (Figure 4.2f) is an analogous 

configuration to BP2 (Figure 4.1e), and both possess comparable CO2 binding parameters except 

for a 1.7° smaller O-C-O angle for the former. However, BPVo4 (Figure 4.2g) and BPVo6 

(Figure 4.2i) are unique configurations that have no analog in the perfect surface-supported Pt 

octamer case. BPVo4 (Figure 4.2g) shows CO2 interacting at the interface edge, mainly with one 

Pt atom in the bottom layer of the octamer. This Pt atom binds the C and O of CO2, while the 

other O atom of the adsorbate binds with a 5c-Ti atom, leading to an O-C-O angle of 140.6°. 

BPVo6 (Figure 4.2i) is also an interfacial CO2 adsorption configuration, but a metastable one. In 

this case, the C atom is interacting with two Pt atoms, while one O atom is simultaneously 

interacting with one Pt and one surface 5c-Ti atom. Note that among all the CO2 adsorption 
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configurations obtained in this research, the O-C-O angle in BPVo6 (121.1°) is the smallest, and 

the binding distance of C and O in CO2 (1.39 Å) is the longest. Furthermore, this O-C-O angle is 

smaller than those of the CO2 anion reported experimentally and computationally, and the C & O 

intra-bonding distance is larger by around 0.14 to 0.16 Å.
122, 141

 This may account for the 

instability of this mode in terms of total energy, but it also reveals a strong tendency for CO2 

dissociation to occur on this model surface if binding can be achieved.      

The adsorption energy for the Pt-derived configurations on the reduced TiO2-supported 

Pt octamers is on average comparable to those on the perfect TiO2-supported Pt octamers. This 

indicates that the presence of the oxygen vacancy does not contribute to the CO2 adsorption 

energetically in the presence of the Pt octamer. However, because additional adsorption sites are 

introduced by the vacancy-induced modification of the local surface structure, it is likely that the 

net effect should be to enhance CO2 photoreduction activity. This assumption is supported by the 

fact that all five Pt-derived binding configurations (BPVo1-BPVo4 and BPVo6) show a tendency 

for notable negative charge accumulation in the C atom of CO2 molecule. Examination of the 

associated charge density difference plots provides additional confirmation of this effect (plots 

for BPVo1 and BPVo2 can be found in Fig. B7 in Appendix B). The magnitude of the charge 

accumulation is comparable to that seen in the modes on the perfect surface-supported Pt 

octamer, and as in the latter case, appears to correlate with the decreasing O-C-O angle of CO2 

(with one exception for BPVo6).  

In summary, the reduced anatase TiO2 (101)-supported Pt octamer surface shows the 

potential to activate CO2 by generating the bent form of the molecule, while simultaneously 

increasing the number of available adsorption sites. This enhanced catalytic capability mirrors 
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our conclusions for clean reduced anatase TiO2 (101) (BVo1-BVo4), and generally matches 

observations for Zn2GeO4 (010) & (001)
138

, brookite (210)
139

, and ceria (110)
140

 surfaces.  

4.3.2.2 Binding Mechanism 

Additional insight into the influence of the octamer on CO2 adsorption can be obtained by 

investigating the binding mechanism and electronic structure in more detail. We focus on two 

scenarios that are of particular interest: first, adsorption on perfect and reduced anatase sites for 

which there is no direct binding to the octamer; and second, adsorption on the Pt octamer, which 

introduces the most additional adsorption sties. 

For adsorption on TiO2 sites (with octamer present) and focusing first on sites where CO2 

is not directly bound to the octamer, we find that electrostatics seem to play the dominant role in 

the binding mechanism. More specifically, there is a competition between attraction and 

repulsion of CO2 by surface Ti atoms: CO2 adsorption on the TiO2 (101) surfaces is affected by 

Ti atoms either attracting the O atom of CO2 or else repelling the C atom.  

The Ti-O attraction can be seen by observing the linear adsorption modes for all tested 

surfaces (refer to L1 & LVo1 in Fig. B6, LA1 & LP1 in Figure 4.1, and LAVo1 & LPVo1 in 

Figure 4.2), for which there is a general correlation between the binding strength and the net 

charge transfer to the binding O of the CO2 molecule. For example, LVo1 has the highest 

adsorption energy as well as almost the highest net charge on the binding O atom of CO2 

(0.060e). The most notable exception to this trend is LP1, which has a net charge transfer to O 

that is comparable to LVo1 (0.061e), yet exhibits much weaker CO2 binding. This is likely due 

to the different orientation of the adsorbed CO2 molecule, as reflected in the variation in the 

electronic properties of linear modes obtained by Sorescu and coworkers.
128

 By comparing LVo1 

and LP1, both adsorb along [010] and are surrounded by three surface Ti atoms (more than those 



65 
 

of other linear modes), but CO2 on LP1 lies flatter. This leads to a clear difference in the average 

distance between the C atom of CO2 and the nearby surface Ti atoms, which is smaller for LP1 

(3.89Å) than for LVo1 (4.01 Å). A likely consequence of this is increased electrostatic 

repulsion
122

 between C and surface Ti atoms in the case of LP1, which results in a smaller 

adsorption energy. 

Such repulsion role of C of CO2 is also a factor in the binding strength of the bridge 

carbonate-like configurations (refer to B2 & BVo2 in Fig. B6, BA2 & BP4 in Figure 4.1, and 

BAVo1 & BPVo5 in Figure 4.2), where it competes with bonding between O atoms of CO2 and 

surface Ti atoms. The Bader charge analysis of the pair of BP4 & BPVo5 suggests these two are 

dominated by the Ti-O bonding effect. Given that C of CO2 in both modes exhibits the same 

electronic trend, the difference in the total negative charge accumulation at both O atoms of CO2 

uniquely explains the differences in their binding strength. On the other hand, the pair of B2 & 

BVo2 illustrates that the charge on the C atom of CO2 is highly relevant to the binding strength. 

Whereas the total negative charge accumulations at O of CO2 are comparable in the two cases 

(0.067 & 0.064e), the C of CO2 in BVo2 gains a charge of 0.024e while that in B2 shows an 

opposite loss of 0.005e. As a result, BVo2 experiences less electrostatic repulsion than B2, which 

may explain why BVo2 is stable and B2 is metastable. Note that the least favored bridged-

carbonate configuration identified in this study is B2, which has both weak binding via O of CO2 

(0.044e less charge accumulation compared to the barely favored BPVo5), as well as 

electrostatic repulsion between C of CO2 and surface Ti atoms.  

For adsorption at sites associated with Pt octamer, BP1-BP3 (Figure 4.1d-f) and BPVo1- 

BPVo6 (Figure 4.2d-i) reveal the Pt octamer’s ability to provide additional adsorption sites for 

bent-form CO2 species on anatase TiO2 (101). This can be explained in terms of the electronic 
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structure of the Pt surface with respect to the adsorbate states, which facilitates the formation of 

bonding states. Figure 4.3 shows p-DOS plots for BP1 and BP2, superimposed with select charge 

density plots corresponding to specific states. The peaks corresponding to Pt and O of CO2 show 

strong resonance at lower energy levels, as well as weaker resonances near the top of the valance 

band and in the bandgap. For Pt and C of CO2 atoms, the resonant peaks lie mainly in the lower 

energy levels, with minor resonances elsewhere, especially in the range of -2eV to Fermi level. 

This suggests the adsorbed CO2 has a strong tendency to hybridize with the Pt octamer at lower 

energy levels (around -10 eV ~ -6eV with respect to the Fermi level). Further examination of the 

charge density associated with DP1-DP4 (Figure 4.3a) and DP1&DP2 (Figure 4.3b) shows that 

CO2 is using its bonding molecular orbitals (e.g. 2σg for DP1 in Figure 4.3a and 1πu for DP2 in 

Figure 4.3b) to form additional bonding orbitals with d-like orbitals of the Pt octamer. At higher 

energies, additional orbital hybridization between C and the Pt octamer is observed, as can be 

seen in the charge densities associated with the DP3&DP4 states in Figure 4.3b. The ability of 

CO2 to form a bonding orbital with the Pt octamer is attributable to the matching shapes, 

orientations, and comparable energy levels of the two sets of orbitals.
119

 It can be concluded that 

the additional CO2 adsorption sites provided by Pt octamer are made possible by the ability of Pt 

to form bonding orbitals with CO2 molecule. In other words, the dominant binding mechanism 

for CO2 on the Pt sites involves orbital hybridization, whereas electrostatic interactions dominate 

at sites associated with the TiO2 surface.  

4.3.2.3 Vibrational Frequencies  

Analyzing the CO2 vibrational frequencies on the surfaces with Ag/Pt octamers offers 

insight into key bond characteristics of the adsorbed molecule, and can provide a useful roadmap 

for interpreting experimental vibrational spectra. Table 2 & 3 shows the calculated vibrational 
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frequencies for CO2 adsorbed on surfaces of anatase (101)-supported Ag and Pt octamers. 

Significantly, we find that specific vibrational modes can be used as indicators for key geometric 

and electronic quantities that are directly relevant for CO2 activation. In particular, among the Pt 

octamer-associated bent-form CO2 molecules, there is a correlation between the bending 

frequency (ν2) and negative charge accumulation at C, and between the asymmetric stretching 

frequency (ν3) and the O-C-O angle of the adsorbed CO2 molecule. Moreover, characteristics of 

the ν2 and ν3 modes may reveal different CO2 adsorption sites.  

The experimental vibrational frequencies of symmetric (ν1) and asymmetric (ν3) 

stretching for linear adsorbed CO2 on P25 and several metal oxide surface were reported to be 

around 1259 and 2373 cm
-1

,
142, 143

 while frequencies for adsorbed bent-form CO2 were reported 

to be 1315 and 1589 cm
-1

 on anatase TiO2.
144

 For the CO2
-
 anion, the reported values are 1219 

and 1640 cm
-1

 on P25,
143

 1245 and 1670 cm
-1

 on anatase TiO2,
144

 and 1247 and 1670 cm
-1

 on 

anatase TiO2 in the presence of H2O.
145

 Previous calculation results
122, 128, 139

 revealed that on 

neutral perfect anatase TiO2 (101) and brookite TiO2 (210) surfaces, the calculated vibrational 

frequencies of the bent CO2 modes were close to the experimental results, although the electronic 

analysis prevented the actual formation of CO2
-
 anion. For the reduced surfaces, the formation of 

CO2
-
 anion was found, with the calculated vibrational frequencies showing a comparable or 

slightly larger shift with respect to the experimental values. The relatively good agreement 

between theory and experiment justifies comparison of our results to published data.  

As described above, significant electron transfer to the CO2 adsorbate was mainly found 

on the perfect and reduced TiO2 surfaces in the presence of the Pt octamer. The most promising 

configurations for CO2 activation are BP1 - BP3 in Figure 4.1d-f and BPVo1 - BPVo4 in Figure 

4.2d-g, since these exhibit sufficient electron transfer so as to be close to an adsorbed CO2
-
 anion. 
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Calculated vibrational frequencies indicate that the corresponding IR bands for the adsorbed CO2 

are obtained in the range of 602-1934 cm
-1

. Compared to the reported experimental values for 

CO2 on anatase TiO2, ν1 modes show redshifts up to 131 cm
-1

, while for ν3 the largest redshift is 

around 159 cm
-1

 and the largest blueshift around 264 cm
-1

. The ν2 (bending) mode varies from 

602 to 805 cm
-1

. Note that ν1 and ν3 (1130 and 1690 cm
-1

) of BP2 are the closest to the 

experimentally reported values for anatase.  

Among the Pt octamer-associated CO2 adsorption modes (BP1 - BP3 in Figure 4.1d-f and 

BPVo1 - BPVo4 in Figure 4.2d-g) in which the C atom gains appreciable negative charge, a 

clear trend between the ν2 mode and the charge accumulation at C was found, as shown in 

Figure 4.4a. Higher electron accumulation at C is correlated with a higher ν2 mode. This may be 

related to increased stiffness of the intra C-O bond of CO2 due to the dipole moment 

enhancement from the charge transfer to C. Notably, the ν2 mode was also used by He et al.
122

 to 

characterize the net charge transfer to C associated with CO2 adsorption on the clean anatase 

TiO2 (101) surface. Also, Figure 4.4a shows that in general, interface edge adsorption sites (in 

red circle, excepting BPVo4) tend to possess higher ν2 modes compared to adsorption sites 

directly on the Pt octamer (in green dotted circle). Furthermore, if we compare the Pt octamer-

associated CO2 adsorption modes in Figure 4.4a with modes not directly associated with the Pt 

octamer (BP4 in Figure 4.1g and BPVo5 in Figure 4.2h), the former tend to have ν2 modes 

below ~800 cm
-1

 while the latter tend to have ν2 modes above that value. This is likely because 

C interacts with different atoms in these two cases. In the direct interaction of C with Pt atoms, 

there is noticeable net charge transfer to C and hybridization with the Pt states, which induces a 

stronger interaction and an associated reduction in the frequency of the bending mode. In 

contrast, TiO2 surface sites exhibit a much weaker interaction between C and surface O atoms, 
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involving comparatively minor charge transfer; this accounts for the higher frequency of the CO2 

bending.    

The ν3 asymmetric stretching mode for the surfaces with Pt octamers correlates well with 

the O-C-O angle of the adsorbed CO2 molecule. As shown in Figure 4.4b, the smaller the angle, 

the smaller the value of ν3 (note that this trend holds true even for configurations where charge 

transfer to C is minimal, i.e., BP4 and BPVo5). For the bent forms on the perfect surface in the 

presence of the Pt octamer (BP1-BP4 in Figure 4.1d-g), ν3 decreases as 1918, 1690, 1615, and 

1511 cm
-1

, and the O-C-O angle as 148.4, 135.9, 132.2, and 127.7°. Similarly, on the supported 

reduced surface (BPVo1 - BPVo5 in Figure 4.2d-h), ν3 decreases as 1934, 1791, 1715, 1647, and 

1529 cm
-1

, and the O-C-O angle decreases as 147.6, 140.6, 134.2, 132.5, and 124.9°. Apparently, 

the smaller O-C-O angle mitigates the antisymmetric stretching of the CO2 molecule. Moreover, 

comparing the adsorption modes on the Pt octamer with those at the interface edge, the latter 

tend to possess a smaller O-C-O angle, and a correspondingly lower ν3 frequency. This is due to 

the cliff-like geometry created at the interface between the Pt octamer and the anatase (101) 

surface, which allows CO2 to adsorb with an O-C-O angle that approaches 90°. Excepting 

BPVo4, we suggest that a smaller value of ν3 (~1500-1540 cm
-1

, red circle in Figure 4.4b) could 

be used as a signal that CO2 is adsorbed at the cluster/support interface edge. 

In summary, for bent-form CO2 species associated with the Pt octamer, a higher ν2 mode 

seems to be an indicator of adsorbed CO2 with more negative charge accumulation. On the other 

hand, a higher ν3 mode seems to reveal a larger O-C-O angle of CO2. Moreover, a ν2 mode 

below ~800 cm
-1 

tends to indicate CO2 adsorption sites for which there is direct interaction 

between the adsorbate at the Pt octamer, whereas direct TiO2 surface sites show higher ν2 values. 

Values of ν2 in the range ~750-800 cm
-1

 are primarily associated with interface edge adsorption, 
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whereas values below that range indicate adsorption mainly on the Pt octamer itself. Interface 

edge adsorption sites may also be revealed by smaller ν3 values (~1500-1540 cm
-1

).  

Note that according to Tables 2 & 3, the calculated frequencies of pairs with similar 

adsorption configurations (e.g., BP1 & BPVo1, BP2 & BPVo3, and BP3 & BPVo2) are similar 

to each other. This gives confidence in uniquely assigning frequencies to observed adsorption 

sites. For instance, on the surfaces with a Pt octamer deposited on anatase TiO2 (101), we can 

assign ν1 and ν3 in the ranges of 1174-1203 cm
-1

 and 1511-1529 cm
-1

, respectively, to an 

adsorbed CO2
-
 anion at the interface edge. The ν1 and ν3 ranges of 1114-1130 cm

-1
 and 1690-

1715 cm
-1

 can be assigned to a CO2
-
 anion on a Pt octamer involving simultaneous interaction 

with two Pt atoms. The ν1 and ν3 ranges of 1142-1167 cm
-1

 and 1918-1934 cm
-1

 can be ascribed 

to a CO2
-
 anion on a Pt octamer involving interaction with only one Pt atom.  

4.3.3 Pt Octamer Induced CO2 Dissociation to CO 

So far, we have considered the formation of surface-adsorbed complexes that resemble 

the CO2
-
 anion, which is a key precursor for the formation of CO. In this section, we explore a 

possible pathway for the subsequent reduction step, namely, cleavage of CO2
-
 to form surface-

adsorbed CO on a neutral surface of a reduced anatase TiO2 (101)-supported Pt octamer. 

The dissociation of CO2 to CO has been investigated by a number of investigators.
145-148

 

While such dissociation was observed on the surfaces of reduced TiO2-supported Pt, Rh, and Ir 

upon illumination at 190K, supported Pd and Ru surfaces exhibited no CO formation.
146

 An 

investigation using an electron-induced route (i.e., electrocatalysis) was also reported on reduced 

TiO2 (110) with a threshold of 1.4 eV.
148

 Based on DFT calculations, promising photocatalysts 

such as Zn2GeO4 (010)
138

 and ceria (110)
140

 also suggest the possibility of forming CO from CO2 

dissociation on surfaces with oxygen vacancies. One common feature of the proposed 
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dissociation mechanisms is that one O atom of the CO2 molecule is linked to the oxygen vacancy, 

resulting in the weakening of the C-O bond.   

Figure 4.5 shows a possible dissociation pathway (CF1-CF7) for adsorbed CO2 to 

adsorbed CO. In the final configuration (CF7), CO is found at the interface edge with C 

interacting with two Pt atoms at an average distance of 1.94 Å and O with 5c-Ti in a distance of 

2.28 Å. The dissociated O bridges a 5c-Ti and a Pt atom at distances of 1.78 Å and 2.01 Å, 

respectively. To understand the energy needed to activate the CO2 dissociation, a scenario is 

investigated starting with CO2 adsorbed on the TiO2 surface, shown in CF1 (resembling the 

BPVo5 CO2 adsorption configuration in Figure 4.2h). The CI-NEB calculation shows that a 

disturbance of 0.15eV is initially needed to destabilize the adsorbed CO2 (CF2), following which 

the system follows a downhill path to a configuration where C of the CO2 is interacting with one 

Pt atom of the Pt octamer (CF3). The major energy barrier (CF4) is then reflected in the 

extraction of one O from CO2 to a bond distance of 1.83 Å (for reference, the calculated bond 

distance of C-O is 1.18 Å for free CO2), followed by a downhill path to continue the C-O 

separation and transition to a configuration in which the C atom interacts with two Pt atoms 

instead of one (CF5-CF7). The energy barrier of CO2 dissociation to CO is estimated to be 

1.01eV.  

This mechanism is different from what has been reported for larger nanoparticles, where 

one O of CO2 fills the oxygen vacancy as C bonds to the nanoparticle, then upon irradiation 

transfers the photo-induced charge to the CO2 molecule to activate C-O bond breaking.
146

 In the 

case of the Pt octamer on reduced anatase (101), our proposed dissociation mechanism is not 

directly related to filling of the oxygen vacancy. Rather, the key role of the vacancy here is to 

enable the cluster to more easily modify its geometry to facilitate the dissociation process. This is 
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a direct consequence of the fluxionality of the subnanometer metal cluster, which is not possible 

for larger particles. This geometric reorganization is best seen in the early steps in the proposed 

mechanism (CF2-CF4), in which one Pt atom stretches out of the Pt octamer to interact with the 

CO2 molecule.  

The weakening of the C-O bond is attributed to the filling of antibonding orbitals of the 

CO2 molecule.
110

 Based on the configurations in Figure 4.3, it is difficult to uniquely identify the 

antibonding orbitals, but the highest bonding orbital of CO2 can be seen in DP4 of Figure 4.3a 

and DP2 of Figure 4.3b, which lie deep below the Fermi level. This suggests that the 

hybridization of antibonding orbitals of CO2 could also occur below the Fermi level. For instance, 

in Figure 4.3b, states DP3 & DP4 clearly have antibonding character, and could lead to the 

cleavage of the C-O bond of the CO2 molecule. This result suggests another possible advantage 

that Pt octamers or other subnanometer metal clusters may bring to CO2 photoreduction.   

4.4 Conclusions 

The presence of Ag or Pt octamers can substantially modify CO2 adsorption on perfect & 

reduced anatase TiO2 (101) based on DFT calculations. In fact, the presence of the Ag & Pt 

octamers affects CO2 adsorption even at TiO2 surface sites where there is no direct binding 

between CO2 and the octamer, suggesting the octamer modifies the properties of the TiO2 itself 

as it donates electron density to the surface. For adsorption on the TiO2 sites not directly abutting 

the octamers, the nature of the Ag/Pt-induced effect depends on the orientation of the adsorbed 

CO2 molecule. It also differs for the perfect (vacancy-free) and reduced (oxygen vacancy) 

surfaces. We attribute this behavior to a binding mechanism that involves electrostatic 

competition between two factors: (1) attraction between Ti and the O atom of CO2 as the latter 

accepts negative charge from the surface; and (2) repulsion between Ti and the C atom of CO2. 
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Deposition of subnanometer Pt clusters appears to provide certain important advantages 

for CO2 activation on anatase TiO2 (101) surfaces. First, the Pt atoms provide extra adsorption 

sites for bent-form CO2—a key dissociation precursor state leading to the products of CO2 

photoreduction—as compared to the Ag-octamer-decorated or pure anatase TiO2 (101) surfaces. 

The available sites were found at the interface edge of the Pt octamer and the anatase surface, 

and also directly on the Pt octamer. In most cases, the adsorption strength at these sites is also 

enhanced, which is generally beneficial for bond activation. In addition, Bader charge analysis 

suggests that at these Pt surface or Pt-TiO2 interface sites, the adsorbed CO2 can be 

spontaneously converted to a CO2
-
 anion-type complex as negative charge accumulates at the C 

atom of the CO2 molecule. A detailed examination of the associated electronic structure suggests 

that unlike binding to TiO2 sites, where electrostatics play a key role, the interaction between 

CO2 and Pt is instead facilitated by the molecular orbitals of CO2 forming bonding orbitals with 

d states of Pt in the octamer. This explains the significant charge transfer to the adsorbed CO2, as 

well as the Pt octamer’s ability to provide additional adsorption sites. This same advantage is 

lacking for the Ag octamer, likely a consequence of insufficient orbital overlap due to the shape 

and orientation of the outer s orbitals of Ag.      

Calculated vibrational frequencies suggest that the ν2 vibrational mode of bent CO2 

molecules adsorbed on Pt octamers can be used as an indicator of negative charge accumulation 

on C, and hence the formation of the CO2
-
 anion precursor. In addition, a direct relation between 

the ν3 mode and the O-C-O angle of the CO2 molecule was found, providing a possible indicator 

for identifying bent CO2 geometries. Information from the vibrational frequencies can also be 

used for identification of CO2 adsorption sites. For instance, a ν2 mode > ~800 cm
-1

 seems to 

indicate CO2 adsorption on sites that are not directly associated with the Pt octamer, while lower 
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frequencies correspond to sites that are related to the Pt octamer. Also, ν2 in the ~750-800 cm
-1

 

range, combined with a small ν3 (~1500-1540 cm
-1

), tends to indicate interface edge adsorption. 

Finally, we show one possible mechanism by which a Pt octamer on reduced anatase 

TiO2 (101) could further dissociate adsorbed CO2 to CO, aided by the enhanced fluxionality of 

the Pt octamer due to the oxygen vacancy, and by the filling of antibonding orbitals of CO2 to 

weaken the intramolecular C-O bond. The calculated energy barrier for this surface dissociation 

process is 1.01eV. In summary, our results suggest that subnanometer metal clusters such as Pt 

could be used to enhance the photocatalytic activity of TiO2 and other semiconductors.  
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Figure 4.1 Stable CO2 adsorption configurations on the perfect anatase TiO2(101) surface in the 

presence of Ag and Pt octamers (O in red, C in black, Ti in blue, Ag in silver, Pt in green. The 

numbers indicate the bond lengths in Å). 
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Figure 4.2 Stable CO2 adsorption configurations on the reduced anatase TiO2(101) surface in the 

presence of Ag and Pt octamers (O in red, C in black, Ti in blue, Ag in silver, Pt in green. 

Yellow arrow indicates the oxygen vacancy. The numbers indicate the bond lengths in Å). 
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Figure 4.3 p-DOSs (C & O of CO2 and Pt) and associated density plots of specific states formed 

upon CO2 adsorption at the interface edge (BP1) and directly on the Pt octamer (BP2): (a) 

configuration BP1 with states DP1-DP4 at -9.57, -8.13, -7.32, and -6.53 eV; (b) configuration 

BP2 with states DP1-DP4 at -6.17, -5.93, -1.10, and -0.13 eV (Above and below the axis 

correspond to spin up and spin down, respectively). 
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Figure 4.4 Correlations between (a) the bending frequency (ν2) and the negative charge 

accumulation at C of CO2, and of (b) the asymmetric stretching frequency (ν3) and the O-C-O 

angle of CO2. (Red circle: CO2 adsorption sites at the interface edge; Green dotted circle: CO2 

adsorption sites directly on the Pt octamer.) 

 

 

         

Figure 4.5 A proposed pathway, CF1-CF7, for CO2 dissociation to CO on the surface of a 

reduced anatase TiO2(101)-supported Pt octamer. 
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Table 4.1 Calculated properties
a
 based on CO2 adsorption configurations on perfect/reduced 

anatase TiO2(101). 

Ads. 

config. -Eads(eV)  ∠OCO(deg.) ∆e of CO2  ∆e of C in CO2 

B1 -0.02 130.1 -0.011 0.017 

B2 -0.09 134.1 0.062 -0.005 

L1 0.14 178.7 -0.013 -0.025 

BVo1 0.76 135.2 0.799 0.827 

BVo2 0.51 132.4 0.088 0.024 

BVo3 0.37 127.6 0.150 0.064 

BVo4 0.13 150.1 0.393 0.421 

BVo5 -0.03 129.9 0.001 -0.005 

LVo1 0.36 177.8 -0.036 -0.048 

     
a 
Values represent the adsorption energy, O-C-O angle of CO2, and the difference of the Bader 

charge of the CO2 molecule upon adsorption (∆e >0 means negative charge accumulation; L and 

B represent linear and bent adsorption forms, respectively; Vo represents an oxygen vacancy).   

 

Table 4.2 Calculated properties
a
 based on CO2 adsorption configurations on perfect anatase 

TiO2(101) in the presence of Ag and Pt octamers. 

Ads. 

config. 
-Eads(eV) ∠OCO(deg.) 

∆e of CO2 ν(CO2)(cm
-1

) 

C O O ν1 ν2 ν3 

BA1* 0.31 126.1 -0.012 -0.018 0.072 1213 827 1606 

BA2 0.20 132.7 0.001 0.077 0.102 1247 801 1629 

LA1 0.11 178.6 -0.014 0.000 0.026 1317 624 2359 

BP1* 0.72 127.7 0.599 0.044 -0.051 1174 760 1511 

BP2* 0.69 135.9 0.537 -0.041 -0.053 1130 713 1690 

BP3* 0.16 148.4 0.374 -0.058 0.000 1167 602 1918 

BP4 0.09 132.2 -0.006 0.054 0.072 1260 806 1615 

LP1 0.10 179.0 -0.029 -0.003  0.061 1307 608 2345 

 
a
Values represent the adsorption energy, O-C-O angle of CO2, difference of the Bader charge of 

the CO2 molecule upon adsorption, and vibrational frequencies of symmetric (ν1), bending (ν2), 

and asymmetric (ν3) stretching modes (∆e >0 means negative charge accumulation; L and B 

represent linear and bent adsorption forms, respectively; A and P represent Ag and Pt; asterisks 

indicate direct interaction with Ag/Pt octamers).     
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Table 4.3 Calculated properties
a
 based on CO2 adsorption configurations on reduced anatase 

TiO2(101) in the presence of Ag and Pt octamers. 

  

Ads.                     

Config. 
-Eads(eV) ∠OCO(deg.) 

∆e of CO2   ν(CO2)(cm
-1

) 

C O O ν1 ν2 ν3 

BAVo1 0.12 132.9 0.009 0.068 0.092 1251 798 1640 

BAVo2* -0.28 128.0 0.012 0.100 0.084 1185 806 1626 

LAVo1 0.14 178.8 -0.014 0.002 0.019 1315 626 2359 

BPVo1* 0.71 124.9 0.595 -0.058 0.039 1203 772 1529 

BPVo2* 0.68 147.6 0.381 -0.086 -0.003 1142 621 1934 

BPVo3* 0.66 134.2 0.523 -0.023 -0.065 1114 734 1715 

BPVo4* 0.32 140.6 0.417 0.075 -0.077 1180 666 1791 

BPVo5 0.00 132.5 -0.007 0.042 0.069 1265 805 1647 

BPVo6* -0.19 121.1 0.566 -0.020 0.009 1145 728 1670 

LPVo1 0.15 179.3 -0.020 0.033 -0.009 1318 626 2361 

 
a
Values represent the adsorption energy, O-C-O angle of CO2, difference of Bader charge of CO2 

molecule upon adsorption, and vibrational frequencies of symmetric (ν1), bending (ν2), and 

asymmetric (ν3) stretching modes (∆e >0 means electron accumulation; L and B represent linear 

and bent adsorption forms, respectively; Vo represents an oxygen vacancy; A and P represent Ag 

and Pt; asterisks indicate direct interaction with Ag/Pt octamers).      
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CHAPTER 5: MORPHOLOGY EFFECT OF SUPPORTED SUBNANOMETER PT 

CLUSTERS ON FIRST AND KEY STEP OF CO2 PHOTOREDUCTION 

 

 

This chapter summarizes the investigations of the geometry effect (2D-3D) of the 

supported Pt cluster on the key precursor for CO2 photoreduction using Density Functional 

Theory calculations. Initially, from our previous study
113

 it is anticipated that as long as it is Pt 

clusters the availability of the bent form CO2 adsorption sites is expected. Interestingly, we find 

supported 3D rather than 2D Pt clusters benefit CO2
-
 anion formation by providing more binding 

sites for bent CO2 species and facilitating charge transfer. In addition, particularly for CO2 

adsorbed at interface edge site, 3D clusters tend to possess higher structural fluxionality than 

pro-2D clusters, and the structural fluxionality correlates positively with CO2 binding strength. 

The binding competition among Pt - CO2 interactions is found to affect the CO2 adsorption. A 

model based on these two factors is proposed to explain why CO2 does not adsorb on the surface 

of the pro-2D Pt cluster. Electronic structure analysis suggests for CO2-TiO2 supported Pt 

subnanometer clusters, CO2 s&p - metal d are the dominating bonding states. Also, we find that 

the strong binding tendency of Pt clusters with surface Ti atoms determines the geometry of the 

deposited Pt clusters, which explains why on the reduced TiO2 surface Pt tetramer and hexamer 

tend to be 2D geometries. The charge accumulation at C and the O-C-O angle of adsorbed CO2 

are found to correlate with the C-O bond breaking tendency. The C-O symmetric(ν1), O-C-O 

bending (ν2), and asymmetric (ν3) stretching frequencies can be used as reliable indicators to 
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reveal unique electronic/geometric properties and C-O bond breaking tendency of adsorbed CO2 

as well as to distinguish specific adsorption sites.  

5.1 Introduction  

Ever since Fujishima and Honda first demonstrated photocatalytic water splitting with 

TiO2 electrodes in 1972,
114

 numerous researchers have extended the idea to environmental
115

 and 

solar energy
116, 149

 related applications. CO2 photoreduction is of important application since it 

has dual effects of reducing the CO2 levels in the atmosphere and generating renewable energy 

(light hydrocarbon). However, the efficiency of the photo-conversion remains a weakness.
7
 

Techniques to improve the efficiency include cocatalyst,
70

 plasmonic active particles,
71, 72

 

doping,
5
 and surface defects.

150
 Understanding the mechanism of CO2 photoreduction has been a 

focus of a number of theoretical studies.
7, 113, 122, 127, 151

 Among CO2 photoreduction steps, the 

highest reduction potential resides in the first step, CO2 to CO2
-
 anion, which makes itself a key 

step.
1
 One vital factor for the success of this step is the geometry of the adsorbed CO2 species,

7
 

bent form CO2. Due to the decrease of the CO2 LUMO energy as the O-C-O bond angle 

decreases, bent form CO2 makes it easier to obtain photoexcited electrons to form CO2
-
 anion.

7, 

122
 Prior ab initio studies have investigated CO2 adsorption on different neutral surfaces of TiO2 

clusters.
124, 126, 127, 152

 More thorough studies have considered periodic TiO2 models with/without 

oxygen vacancies
122, 153

 and interstitial Ti atoms at (sub)surfaces
128

. Other oxide surfaces such as 

Zn2GeO4
138

 and ceria(110)
140, 154

 have also been studied. 

Oxide supported subnanometer metal clusters have drawn considerable interest due to 

their enhanced catalytic activity
21, 25, 118, 155-157

 which are attributed to the unique properties of 

such tiny clusters: dynamic structural fluxionality,
118

 larger fraction of under-coordinated surface 

atoms,
25, 156

 and the interactions between deposited cluster and the support.
28

 The fundamental 
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understandings of subnanometer metal cluster related studies have become crucial in advancing 

the development of promising subnanometer cluster based catalysts and photocatalysts.
29

 We 

studied interplays between Ag&Pt clusters (dimer, tetramer, and octamer) and anatase TiO2 (101) 

surface,
58

 and developed a binding mechanism of cluster on support to assist subnanometer 

cluster characterization. Also, we proposed an explanation for decoration, and suggested 

indicators for sintering and clusters induced sub-bandgaps. Interestingly, we found the 

reconstruction of clusters, Pt tetramers exhibiting two dimensions (2D) and three dimension (3D) 

geometries. 

Recently, we have studied the favored CO2 adsorbates for the first and key step on 

subnanometer Ag&Pt clusters/anatase TiO2 (101) surfaces, wanting to know what effect these 

tiny clusters can bring.
113

 We found the presence of Ag and Pt octamers can enhance CO2 

adsorption through direct or indirect channels. Supported octamers can indirectly donate negative 

charge through the anatase TiO2 (101) surface to enhance CO2 binding. Interestingly, TiO2-

supported Pt octamers rather than supported Ag octamers can directly interact with CO2 species, 

providing stable adsorption sites for bent-form CO2 species as well as facilitating CO2
-
 anion 

formation.  

However, the effect of the cluster geometry (ex: structural fluxionality) on the key 

precursor adsorption is not well investigated. The cluster size is an important factor for catalytic 

behaviors of metal/oxide catalysts.
158, 159

 Studies
38, 69, 160-162

 have shown the catalytic activity is 

related to the cluster size and geometry. Watanabe et al.
160

 showed that as the size of Ptn(n=4, 7-

10 and 15) on the rutile TiO2 varied, there was a geometrical transition of planar and 3D 

dimensional structures at n=8, at which a significant decrease in activation energy occurred for 

CO oxidation reaction. Kaden et al.
69

 reported that for Pdn/rutile TiO2 (n=1, 2, 4, 7, 10, 16, 20, 
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and 25) the size variation positively correlated with CO oxidation activity, and that the increase 

of the cluster size also correlated with the growth of cluster layer from one to two.  

In this article, using density functional theory (DFT) we examine the effect of the cluster 

geometry (2D to 3D) on the preferred CO2 adsorbates for the first and key step of CO2 

photoreduction, which we study on Pt tetramer, hexamer, and octamer
113

 supported on 

perfect/reduced anatase TiO2 (101) surfaces. We focus on the effect of geometries on the four 

basic ingredients leading to the formation of the precursor for CO2 photoreduction:
113

 (i) 

availability of binding sites, (ii) intermediate adsorption energy at those sites (too strong = traps; 

too weak = inactive), (iii) geometry of the bent CO2, and (iv) charge transfer to C of CO2. The 

displacement per Pt atom is found to represent cluster’s structural fluxionality, and is used to 

investigate the relationship with these four basic ingredients. The properties of 2D and 3D 

geometries of the deposited clusters are explored in detail. The C-O bond breaking tendency is 

also evaluated. Finally, an attempt is made to connect with experimental studies by analyzing the 

variations in calculated vibrational frequencies for adsorbed CO2 as a function of adsorption sites, 

geometry, and electronic information. Such understanding is intended to help the development of 

promising subnanometer metal cluster/semiconductor catalyst for CO2 photoreduction.  

5.2 Computational Methods 

The choice of the surface was inspired by the fact that TiO2 continues to be the standard 

material for the fundamental study of photocatalysis;
121

 also, anatase TiO2 (101) is the most 

stable surface and is the main constituent in commercial Degussa P25 photocatalyst.
82

 Anatase 

TiO2 (101) surface is characterized by 2-fold(2c)/3-fold(3c) coordinated O atoms, and 5-fold(5c-

)/6-fold(6c-) coordinated Ti atoms. The 3c-O atoms consist of 3c-O between 5-c Ti and between 

6-c Ti atoms.
58

 Pristine anatase surface (i.e., perfect surface) is considered as well as the surface 
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with an oxygen vacancy (i.e., reduced surface) due to interesting catalytic effect from point 

defects such as oxygen vacancies, hydroxyl groups, and interstitial atoms.
79

 Oxygen vacancy 

(reduced surface) is modeled by removing an oxygen atom from a bridge site (2c-O) to compare 

with previous work
113

 and others.
122, 128

 The stable geometries of the supported Pt tetramer and 

hexamer on perfect and reduced were obtained using the method described in our previous 

work.
58

  

The DFT calculations were performed using the VASP (Vienna Ab Initio Simulation 

package) code.
87-89

 Exchange-correlation was represented by the Perdew–Burke–Ernzerhof (PBE) 

functional of the generalized gradient approximation (GGA),
90

 and the electron-ion interactions 

were modeled by the projector-augmented wave (PAW)
91

 method. A kinetic energy cutoff of 500 

eV was used for the wavefunctions, and energies were converged to 10
-5

 eV. Spin polarized 

calculations were incorporated in all calculations with the force convergence criteria on each 

atom set to < 0.01 eV/ Å. One limitation of the standard DFT is to underestimate the bandgap of 

transition metal oxides due to the improperly description of the strongly correlated d- and f- 

states. Thus, in our model the strong electron localization at surface Ti atoms surface may affect 

the charge transfer among the support, clusters, and CO2. DFT+U approach is proposed to 

improve the issue by shifting localized states. We have done a test
113

 regarding the effect of U 

values (U=3.5, 4.0, and 4.5) on the Bader charge of CO2 adsorption sites on reduced anatase 

TiO2 (101) surface-supported Pt octamer. The results showed the maximum difference of around 

1% charge transfer under DFT and DFT+U. Previous studies concerning the interactions of 

transition metal clusters
132, 133

/adsorbates
134

 and perfect or reduced TiO2 surfaces also showed 

similar charge distributions and cluster stability with these two methods.  
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We consider a 3x1 supercell of the anatase TiO2 (101) surface with six trilayers, in which 

the bottom three layers were frozen, and the top three layers and metal clusters were relaxed; the 

vacuum region between the slabs was set to 12 Å. A Monkhorst-Pack 
93

 mesh of 2x2x1 k-points 

was used to sample the Brillouin zone for determining the CO2 adsorption on the surfaces of 

TiO2 – supported Pt clusters; the k-points setting was increased to 6x6x1 for the density of states 

(DOS) calculations. The electronic analysis includes atom-projected densities of states (p-DOS) 

within the energy range of interests, and the zero energy position represents Fermi level in the p-

DOS figures. Density plots (DPs) with equal-density isosurfaces of 0.001e/ Å
3
 are also studied to 

investigate the binding mechanism. Bader charge
135

 is analyzed to understand the charge 

distribution of CO2 adsorption sites. The vibrational frequencies are obtained from the frozen-

phonon approach with a displacement of 0.015 Å for each atom in the CO2 molecule. The 

adsorption energies of CO2 on the model surface were calculated as the difference between the 

total energy of the composite system (CO2 adsorbed on TiO2 supported Pt clusters) and the sum 

of total energies of the isolated CO2 and TiO2 supported Pt surfaces. An more negative 

adsorption energy indicates more favorable adsorption.  

5.3 Results  

To enable investigating the effect of the cluster geometry (3D-2D) on the key precursor 

state for CO2 photoreduction, the basic framework used in our previous study of Pt octamer/TiO2 

surfaces 
113

 is applied here to Pt tetramer and hexamer for completeness, which is necessary for 

later discussions such as geometric deformability and geometry (size)-key precursor state 

relationship. Reported here are the structural and electronic information of adsorbed CO2 mainly 

in contact with Pt tetramer and hexamer: at the interface edge of the Pt clusters and TiO2 surface 

(interface edge site, one O of CO2 is interacting with the surface 5c-Ti atom while C or the other 
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O with Pt clusters); only on the Pt clusters (Pt only site: 1-Pt only and 2-Pt only sites in which 

CO2 interacts accordingly with only one Pt and two Pt of the clusters).
113

  

  The optimized configurations and structural parameters of CO2 on perfect surface-

supported Pt tetramer and hexamer are given in Figure 5.1 and 2 while those on reduced surface 

in Figure 5.3 and 5.4, respectively. The adsorption energy, O-C-O angle of CO2, and Bader 

charge difference of the adsorbed CO2 molecule for each configuration on the cluster/perfect and 

cluster/reduced surfaces are reported in Table 1 and Table 2, respectively. 

5.3.1 CO2 Adsorption on Pt Clusters/Perfect TiO2   

 

Previously, we found Pt octamer/perfect TiO2 surface offer adsorption site for bent form 

CO2, and those CO2 bind rather strongly compared to the CO2 binding on the pure TiO2 

surface.
113

 We find Pt hexamer/perfect surface follows the same trend, and even better in these 

two aspects; however, supported Pt tetramer does not exhibit such advantages. This makes Pt 

hexamer a potential candidate for CO2 photoreduction on perfect anatase TiO2 (101) surfaces. 

Note that the geometry of the deposited tetramer and hexamer are 3D geometry which is the 

same as the deposited octamer on the same surface.
58

 On the supported Pt tetramer surface, three 

CO2 adsorption sites (PT1-PT3 in Figure 5.1a-c) were found, whereas six (PH1-PH7 in Figure 

5.2a-g) were found for hexamer case. 

For tetramers, Pt only and interface edge sites were observed on the supported hexamer 

and octamer; however, only 1-Pt only site (PT1, Figure 5.1a) was obtained on the supported 

tetramer. The O-C-O angle for this adsorbate is not observed in other cases (Pt hexamers & 

octamers), and may be a characteristic signal for the CO2 adsorption on the supported Pt tetramer. 

Bader charge analysis indicates the formation of the CO2
-
 anion, and this is the only one found 

on this surface. PT2 & PT3 (Figure 5.1, b & c) are not in contact with the Pt tetramer and are not 
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favored. PT3 reveals the formation of carbonate-like molecule upon CO2 adsorption, and a 

reconstruction of the TiO2 surface occurs, in which the distance of the bridge oxygen and the 6c-

Ti atom increased from 2.16 Å to 2.78Å (before and after CO2 adsorption).  

For hexamers, PH1, PH3, PH6, and PH7 (Figure 5.2, a, c, f, and g) are interface edge 

sites. PH1 is the most favored adsorption site among supported Pt clusters considered. The one 

Pt atom-CO2 interaction was not found on the Pt octamer/perfect surface, but was observed on 

the Pt octamer/reduced surface. This suggests a higher geometry reconstruction ability of the Pt 

hexamer over the Pt octamer, and the presence of the oxygen vacancy can help the reconstruction 

of the cluster. The comparison of PH3 to the analogous one on the Pt octamer/perfect surface 

shows that the structural and electronic properties are quite similar to each other with an average 

O-C-O angle of 126.8°. PH7 is similar to PH3 but not a stable one. An apparent difference 

between PH3 and PH7 is the distance between C and the binding Pt atom in the top layer, and the 

charge accumulation at C is more in the latter. PH6 is barely stable, and similar to PT3 (Figure 

5.1c) that a carbonate-like molecule is formed but with an interaction of the O of CO2 and the 

cluster.  

PH2 and PH4 are stable 1-Pt only and 2-Pt only sites. Compared to the corresponding 

ones found on the Pt octamer/perfect surface,
113

 the structural parameters of PH2-like 

configurations are similar with an average O-C-O angle of 147.5°. The structural parameters of 

PH4-like configurations are quite similar with an average O-C-O angle of 136.3°. In terms of 

electronic properties, PH4-like configurations share comparable binding strengths, while PH2 

has higher binding strength; also, PH2 & PH4 have more negative charge accumulation in C than 

the corresponding ones. 
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5.3.2 CO2 Adsorption on Pt Clusters/Reduced TiO2 

Different from the Pt octamer case where the presence of the surface oxygen vacancy 

does not mitigate the CO2 adsorption;
113

 surprisingly, though many adsorption sites were 

obtained on Pt hexamer/reduced surface, most are not favored. Besides, only interface edge site 

is found on Pt tetramer/reduced surface. Note that unlike the perfect surface cases, tetramer and 

hexamer on reduced surfaces tend to exhibit planar geometries (2D), and this is also different 

from the Pt octamer on the reduced surface.
113

 This leads to a conclusion that the geometry of the 

cluster is crucial to the CO2 adsorption. On the Pt tetramer/reduced surface, three CO2 adsorption 

sites (PTVo1-PTVo3 in Figure 5.3 a-c) were found, whereas seven (PHVo1-PHVo7 in Figure 

4a-g) were found on the Pt hexamer/reduced surface.   

For tetramers, PTVo1 (Figure 5.3a) is the interface edge site and the only Pt cluster 

related site. It is also the only stable configuration found on this surface with favored charge 

distribution in the adsorbed CO2. PTVo2 & PTVo3 (Figure 5.3, b & c) are not Pt tetramer related 

sites and are not stable. PTVo3 is a bidentate carbonate specie with a tilted adsorbed CO2 

compared to corresponding ones found on the clean surface;
113, 122, 128

 there are differences of the 

longer bonding distance of O of CO2 with surface Ti and of the C with the surface O atoms by 

0.21 and 0.16Å, respectively. Also, the O-C-O angle in PTVo3 is larger by 7.3°.    

For hexamers, PHVo1 and PHVo5 (Figure 5.4, a & e) are 1-Pt only and 2-Pt only sites, 

and only PHVo1 is a stable site. Notably, the O-C-O angle in PHVo1 (154.7°) is close to that in 

PT1 (151.2°), and this angle similarity seems to relate to the geometry of the clusters. The 

geometry of the tetramer on the perfect surface (pyramid-like, Figure 5.1a) can be considered as 

part of the geometry of the hexamer on the reduced surface. Moreover, the trend of net charge 

transfers in both adsorbed CO2 molecules is quite similar except the magnitude (ex, C: 0.341 & 
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0.337 for PHVo1 & PT1) which may be due to the number of the Pt atoms in the clusters or the 

presence of the oxygen vacancy. Surprisingly, in Pt octamer (perfect & reduced surfaces), 

hexamer (perfect surface), and tetramer (perfect surface) cases, all Pt only sites are stable, but 

PHVo5 is not stable; this may be due to PHVo5’s smallest O-C-O angle (126.9°) among such 

sites found in Pt clusters studied.  

PHVo2, PHVo3, PHVo4, and PHVo6 (Figure 5.4, b, c, d, and f) are interface edge sites, 

and PHVo2 is the only favored one. All binding with one Pt atom at these interface edge is 

different from octamer/reduced surface where interactions with two Pt atoms exist. In this group, 

the O-C-O angles lie between 131.8° and 140.4°. Comparing the structural parameters and 

electronic properties of this group to stable interface edge ones in Pt octamer and hexamer cases, 

no significant differences are found; hence, the dimension of the cluster geometry (2D or 3D) 

seems to play a significant role in the CO2 adsorption.  

To sum up, considering CO2 adsorption associated with Pt clusters (tetramer, hexamer, 

and octamer
113

), almost all adsorbed CO2 species are bent forms, and have appreciable 

acquisition of negative charge in C of CO2. Also, the CO2 binding strength is rather strong 

compared especially to clean stoichiometry TiO2 surface. It is revealed that subnanometer Pt 

clusters are able to bring new electronic property on the conventional TiO2.
113

 However, this does 

not always hold true for Pt hexamer, because on the reduced surface most configurations are not 

favored in terms of total energy. The same is true for Pt tetramer due to its lack of availability of 

adsorption sites. 

Note that bridged carbonate configurations in PT2, PTVo2, PH5, and PHVo7 (Figure 

5.1b, Figure 5.2b, Figure 5.3e, and Figure 5.4g) are the same CO2 configuration found in perfect 

anatase TiO2 (101),
122, 128

 Pt octamer/anatase TiO2 (101).
113

 This configuration stays stable on 
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reduced TiO2 surface, and supported Pt hexamer/octamer (perfect surface). Possible factors are 

electrostatic competition between attractive (surface Ti - O of CO2 ) and repulsive (surface Ti - C 

of CO2) interactions, and charge transfer to CO2 from Ag/Pt clusters.
113

 Notably, CO2 in PTVo2 

has appreciable negative charge accumulation at C (different from most of the corresponding 

configurations) perhaps due to the closer contact of CO2 with the Pt tetramer as reflected from 

the distances of C and Pt tetramer being 2.42 and 4.00 Å for PTVo2 and PT2, respectively.   

5.4 Discussion  

5.4.1 Geometry Change of Adsorbed Clusters (2D->3D) 

Observing adsorbed tetramer and hexamer on the reduced surface, both geometries tend 

to evolve toward flat (2D) geometry as compared to 3D geometries of both clusters on the 

perfect surface. We find that the driving force for the pro-2D geometries is due to the tendency 

of Pt tetramer and hexamer to form bonding orbitals with surface Ti atoms (including 4c-Ti and 

5c-Ti due to the presence of the oxygen vacancy). This is consistent with our previously 

developed binding mechanism of Ptn (n=2, 4, and 8) on perfect anatase TiO2 (101) surface,
58

 

which suggests that Pt clusters have a strong tendency to bind with surface Ti atoms but lesser 

tendency to bind with 2c-O atoms; the underlying factor is the sufficient orbital overlaps of Pt 

clusters and surface Ti atoms to form bonding orbital.  

To see this, we examine the p-DOSs of O, Ti, and Pt atoms of the supported tetramer and 

hexamer (Figure 5.5), the resonant peaks can be seen consisting of Ti, O, and Pt atoms, which 

suggests the disposition of Pt clusters to bind with Ti and O atoms. Further investigations of 

density plots (DPs) show bonding orbitals formed by the cluster and 4c-Ti; for example, DP at    

-2.05eV in Figure 5.5a shows Pt1 of the tetramer binding with 4c-Ti, and DP at -0.58eV in 

Figure 5.5b shows Pt2 of the hexamer binding with 4c-Ti. The binding with 5c-Ti can also be 
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seen; for example, DP at -1.60eV in Figure 5.5a shows Pt2 of the tetramer binding with 5c-Ti, 

and DP at -1.77eV in Figure 5b shows Pt5 of the hexamer binding with 5c-Ti. Our result is also 

consistent with other DFT calculations. Gong et al.
79

 obtained the results that Ptn(n=1-3) prefer to 

bind with the surface Ti & O atoms of anatase TiO2(101), and 4c-Ti & 5c-Ti atoms are favored 

in the presence of oxygen vacancy. The study of Ptn(n=4-8) supported on rutile TiO2(110) 

surface
77

 also pointed out the importance of the Pt-Ti bond on the cluster-support binding 

strength, and two-layer structure are preferred for Pt5-Pt8 except Pt6 favoring planar geometry.  

5.4.2 Geometry (Size)-Related Binding Mechanism 

Prior investigations of the binding mechanism regarding CO2 adsorption on 

perfect/reduced anatase TiO2 (101)-supported Ag & Pt octamers
113

 found that for CO2 adsorption 

in contact with Pt octamers, the binding is facilitated by the hybridization of the molecular 

orbitals of CO2 with d orbitals of the Pt atoms. The results presented here suggest that structural 

fluxionality plays an important role in the adsorption as well as the binding competition between 

Pt atoms with the adsorbate.   

First, we retouch the electronic analysis of the Pt related binding site (interface edge, 2-Pt 

only, and 1-Pt only sites). We have shown DOS and DPs of the interface edge and Pt only sites 

involving two Pt atoms;
113

 in this study those of the Pt only site involving one Pt atom (PH2 in 

Figure 5.2b) are shown in Figure 5.6 to clarify the electronic interactions. Prior work of the 

adsobate-transition metal interaction
110, 163

 suggested that the hybridization of adsorbate valance 

states with the valance states of the metal surface atoms leads to the bonding and antibonding 

states. In the H-metal (Ni, Cu, Pt, and Au) surface systems, the dominating H 1s-metal d bonding 

states lie within -10 and -5 eV.
163

 In the CO2-TiO2 supported Pt hexamer interaction, the 

resonance peaks of Pt and CO2 in figure 5.6a suggest such bonding states also lying mainly 
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between -10 and -5 eV, which is the same range also found in CO2-TiO2 supported Pt octamer.
113

 

Furthermore, in Figure 5.6b the p-DOS of s and p states of CO2 show that the valence states of 

CO2 between -10 and -5 eV are consisted of s and p states (no d states involved) with s states 

dominating in lower energy levels and p states in higher energy levels. DP1 (2σg), DP2, and DP3 

& DP4 (1πu) in Figure 5.6, a & b show CO2 (s & p)-supported Pt hexamer bonding states 

consisted of bonding orbitals of CO2 and d states of the Pt atom. This is consistent with the CO2-

supported Pt octamer interaction of the interface edge and Pt only (involving two Pt atoms) sites. 

Therefore, a general conclusion is that for CO2-TiO2 supported Pt subnanometer cluster CO2 s&p 

- metal d are the dominating bonding states.  

The binding tendency of the adsorbate with the support would be misleading if only the 

geometry is considered 
58

. Pt clusters show appreciable binding inclination with surface O atoms 

of anatase TiO2 (101) based on the observed geometries; however, DPs show that the root 

binding interaction comes from Pt clusters with the surface Ti atoms. The DPs in Figure 5.6 

show that only one Pt atom is involved in this adsorption at Pt only site. The CO2 adsorption 

energies at Pt only sites involving one and two Pt atoms suggest that the CO2 binding strength is 

not related to the number of Pt atoms involved; also, the interface edge sites exhibit the strongest 

CO2 binding strength probably due to extra bonding stabilization from CO2 with surface O atoms.     

5.4.2.1 Structural Fluxionality 

Next, we investigate geometry-dependent binding factors. The geometry reconstructions 

are apparent for supported Pt clusters upon CO2 adsorption, especially for Pt clusters of 3D 

geometry. For example, comparing PH1 and PH5 in Figure 5.2, a & e (PH5 is almost the same Pt 

hexamer geometry of the most favored deposited hexamer when no CO2 molecule is present), 

leads to the conclusion that the Pt hexamer in PH1 undergoes appreciable geometry modification 
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during the CO2 adsorption. This geometry reconstruction is due to structural fluxionality
118

 ,one 

characteristic of the subnanometer metal clusters. During CO2’s interaction with the cluster, the 

cluster tends to vary its geometry to meet the maximum orbital overlaps of the cluster and CO2 

for the formation of the bonding orbitals to sustain their binding. 

To measure this, we define a quantity called displacement (per Pt atom) to represent the 

extent of the cluster’s structural fluxionality as the equation below: 

        Displacement (structural fluxionality) =
∑ √(Xnf−Xni)2+(Ynf−Yni)2+(Znf−Zni)2

n

n
   

where X, Y, and Z represent the coordinates of the n
th

 atom in the cluster; i and f represent the 

initial and final states; and n= 1-N, where N equals the cluster size. Considering the CO2 

adsorption configurations obtained in this (supported Pt tetramer and hexamer) and our previous 

(supported octamer
113

) works, we evaluate the displacement of 3D, 3D/2D, and 2D Pt clusters 

(shown in Figure 5.7a for interface edge sites and in Fig. B8 of Appendix B for Pt only sites). Pt 

only sites show comparable fluxionality capability for all three Pt cluster geometries (3D, 3D/2D, 

and 2D) upon CO2 adsorption, which is apparent because the adsorbate can easily modify itself 

instead of deposited clusters during the adsorption.  

However, at interface edge sites 3D, 3D/2D, and 2D show different fluxionality 

capability. 3D geometry [PO1(BP1)
113

, POVo1(BPVo1)
113

, POVo4(BPVo4)
113

, 

POVo6(BPVo6)
113

, PH1, PH3, and PH7] tend to have high displacement values on average, 

indicating the large geometry changes during the CO2 adsorption. The 3D/2D geometry (PHVo2, 

PHVo3, PHVo4, and PHVo6) show smaller displacements; but, as seen from the optimized 

geometries (Figure 5.4), the displacements mostly come from horizontal shifting. The 2D 

geometry exhibits limited reconstruction. This is because the 2D structure binds tightly with 

surface atoms, restricting its self-modification, while top layer atoms of the 3D structure are less 
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restricted, giving greater freedom for 3D clusters to modify itself. Displacement (structural 

fluxionality) is also related to the CO2 binding strength. The displacements of stable interface 

edge sites are given in Figure 5.7b. As can be seen, there is a positive correlation of displacement 

and the CO2 adsorption energy, which means that the more the cluster modify its geometry, the 

more the maximum orbital overlaps are reached, resulting in stronger CO2 binding strength.   

5.4.2.2 Binding Competition  

Though the hybridization of bonding states of CO2 with d states of the Pt atoms sustains 

the binding as detailed above, it can also cause instability in the CO2 adsorption. Considering the 

major bonding states of the CO2-Pt clusters/TiO2 (-10 eV to -5 eV), the DP at -6.00 eV of 

PHVo5 (Figure 5.8a) indicates the presence of two pulling forces against each other on the CO2 

(due to bonding interactions of Pt1 and Pt6 individually with the CO2 molecule) that makes CO2 

unstable. This is made clearer by comparing the Pt-C-Pt angle to other corresponding stable ones. 

The Pt-C-Pt angles in PH4 (Figure 5.2d) and in those on supported Pt octamers
113

 are 71.3°, and 

64.9° & 64.3°, which is considerably smaller than 94.8° of the metastable PHVo5. It is 

understood that the net force acting on CO2 with smaller Pt-C-Pt angles results in both Pt atoms 

stabilizing the adsorbate; on the other hand, with larger angles Pt-CO2 stabilizing forces become 

smaller, and the forces start to cancel each other due to both Pt atoms competing with each other 

to bind with the adsorbate. Another evidence is from PHVo6 (Figure 5.4f). Looking at the DP at 

-6.48 eV (Figure 5.8b), it is seen that in addition to CO2’s binding with Pt6, the binding with 

surface O atoms is also present (which is the reason of the titled CO2); it is suggested that the 

latter interaction may disturb sufficient orbital overlaps of the CO2 with lopes of the d state of the 

Pt atom.  
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The reason that CO2 is not able to bind on the top surface of the 2D Pt tetramer (refer to 

Figure 5.3) may be due to two factors: limited structural fluxionality and binding competition. 

One scenario is that CO2 diffuses from the bulk to the 2D surface, lying horizontally. The 

binding of C with a Pt atom initiates the adsorption process pulling the CO2 molecule, followed 

by the other Pt atom trying to bind with the adsorbate. Then, each Pt atom starts to attempt the 

maximum overlap with CO2 orbitals, but bindings of Pt with surface Ti atoms restrict the 

geometry modification of the Pt tetramer to satisfy both overlaps. Each pulling force under large 

Pt-C-Pt angle starts to cancel each other, gradually resulting in weak CO2 stabilizing force on the 

surface; finally, CO2 leaves the surface to the bulk.         

5.4.3 CO2 Bond Breaking Tendency 

An evaluation of the CO2 bonding breaking tendency is possible by current 

characterization capabilities.
125, 164-166

 These studies shed light on the nature of CO2 

photoreduction on subnanometer metal clusters based photocatalyst. Freund summarized the 

characterization tools such as LEED and NEXAFS to gain information of CO2 geometry.
125

 

NEXAFS was used to show the geometries of CO2 species on Ni(110).
164

 IRRAS along with 

computation results also reveal the CO2 structure on rutile TiO2(110)
165

 and ZnO(10ī0).
166

 To 

promote the formation of light hydrocarbons via CO2 photoreduction, the breaking of the C-O 

bond of the CO2 molecule is a crucial factor. We find that the C-O bond breaking tendency is 

correlated with the charge transfer to C and the O-C-O angle of CO2. 

The C-O bond breaking is attributed to the electron population to antibonding orbitals of 

the CO2 molecule. We have shown such bond breaking capability of neutral TiO2 - supported Pt 

octamers.
113

 A further evidence for antibonding states below Fermi level is shown in DP5 

(Figure 5.6a) which suggests the hybridization of the nonbonding CO2 orbital (HOMO, 1πg) with 
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the Pt d states. This conclusion is also supported from a study regarding the chemistry of the CO2 

molecule: bent form CO2 resulting in the lowering of the 2πu energy, even lower than 1πg.
125

 

Therefore, we consider all the CO2 adsorption sites in contact with the Pt clusters: tetramer (PT1 

in Figure 5.1a, and PTVo1 in Figure 5.3a), hexamer (PH1-PH4 & PH7 in Figure 5.2, a-d & g, 

and PHVo1-PHVo6 in Figure 5.4a-f), and octamer (BP1-BP3 in Figure 5.1d-f, and BPVo1-

BPVo4 & BPVo6 in Figure 5.2, d-g & i in our previous work
113

).  A correlation between the 

negative charge accumulation at C of CO2 and the C-O bond length is found, as shown in Figure 

5.9a. The more electron accumulation at C is, the longer the C-O length, and this can be 

attributed to the filling of antibonding states of CO2. A DFT calculation using Gaussian09 

program package
94

 with B3LYP functional
122

 comparing CO2 and CO2 anion was performed to 

reveal the role of C in the hybridization of antibonding states. Natural bond orbital (NBO) 

charge
167

 shows C of CO2 possessing 1.02+ with an average C-O bond length of 1.16Å, while C 

of CO2
-
 anion possessing 0.50+ with an average C-O bond length of 1.23Å, indicating that as C 

gains electron, the length of  C-O bond also increases. Another correlation of the C-O bond 

length is found with the angle of O-C-O of CO2 among the configurations just mentioned, shown 

in Figure 5.9b. The smaller the angle is, the longer the C-O bonds. As more electrons accumulate 

at C of CO2, these electrons tend to repulse with the electrons in C-O bonds, resulting in smaller 

O-C-O angle. This is similar to the repelling character of lone pairs that makes H2O a bent 

structure. Note that among 12 interface edge and 9 Pt only sites, four out of the five longest C-O 

bonds are interface edge, while four out of the least five longest C-O bonds are Pt only sites. This 

suggests that the interface site of the anatase TiO2 (101) - supported Pt clusters has higher bond 

breaking tendency over the Pt only sites. 
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5.4.4 Vibrational Frequency 

The vibrational frequencies of symmetric (ν1) and asymmetric (ν3) stretching for 

adsorbed CO2 on several metal oxide surfaces have shown relatively good agreement between 

experimental
143, 144

 and computational
113, 122, 124, 128

 results; the reported experimental values for 

the CO2
-
 anion were in the ranges of 1219-1247 and 1640-1670 cm

-1
 on P25

143
/anatase TiO2

144, 

145
. We have previously revealed that on supported Pt octamer surfaces there are correlations of 

ν2 mode and charge accumulation at C of bent-form CO2, and of ν3 mode and O-C-O angle of 

CO2.
113

 We find that when incorporating adsorbed CO2 species on supported tetramer (PT1 in 

Figure 5.1a and PTVo1 in Figure 5.3a) and hexamer (PH1-PH4 in Figure 5.2a-d and PHVo1-

PHVo2 in Figure 5.4, a & b) along with octamer case (PO1-PO3 representing BP1-BP3 in Figure 

5.1d-f, and POVo1-POVo4 representing BPVo1-BPVo4 in Figure 5.2d-g of our previous 

work
113

), these two correlations still hold true as shown in Figure 5.10, a & b. The sites with the 

most charge accumulations at C of the values around 0.600e have the ν2 mode in the range of 

760-772 cm
-1

, while smaller charge accumulations around 0.35e lie in 574-602 cm
-1

. Likewise, 

smaller O-C-O angles around 126° lie in 1483-1529 cm
-1

 and larger O-C-O angles around 151° 

in 1918-1996 cm
-1

. We suggest these two trends are generalized in supported subnanometer Pt 

clusters, and ν2 & ν3 modes can be reliable indicators for electronic and geometry properties of 

adsorbed CO2 species.  

More detailed information of Pt related adsorption sites (interface edge, one Pt, and two 

Pt sites) is found from ν2 and ν3 modes on top of our prior analysis.
113

 Previously, ν2 in and 

below the range ~750-800 cm
-1 

indicate interface edge adsorption and Pt octamer related 

adsorption, respectively; interface edge sites were also revealed by smaller ν3 values (~1500-

1540 cm
-1

). In this study, we find that the lower ν2 tends to indicate one Pt only adsorption site 
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and higher ν2 tend to indicate interface edge sites. ν2 in the lower range (~570-625cm
-1

) 

represents one Pt atom adsorption site; in the higher range (~760-775 cm
-1

), ν2 signify interface 

edge sites as shown in Figure 5.10a. In between these two ranges, there is a mixed state of 

interface edge and two Pt atoms sites. A similar trend as ν2 mode is also found for ν3 mode as 

shown in Figure 5.10b. ν3 in the higher range (~1910-2000 cm
-1

) represents one Pt atom 

adsorption site; in the lower range (1480-1540 cm
-1

), ν3 tend to indicate interface edge sites. 

Likewise, a mixed state of interface edge and two Pt atoms sites also lies in between the ranges. 

In sum, lower ν2 and higher ν3 reveal one-Pt atom site, while higher ν2 and lower ν3 reveal 

interface edge site along with two-Pt atoms sites in the middle ranges. 

There is some ambiguity when analyzing ν2 mode (below ~800 cm
-1

) for CO2 adsorption 

sites in contact with Pt clusters on supported tetramer and hexamer.
113

 As shown in the Fig. B9 

in Appendix B, though all ν2 modes of the direct TiO2 surface sites are above ~800 cm
-1

, the 

threshold is small. Promisingly, ν1 mode seems to be a more reliable indicator to differentiate Pt 

associated sites from direct TiO2 surface sites. Shown in Figure 5.10c are stable CO2 adsorption 

sites on the supported Pt tetramer, hexamer and octamer: Pt related (the same sites considered in 

Figure 5.10, a & b) and direct TiO2 surface (PT2 in Figure 5.1b, PH5 & PH6 in Figure 5.2, e & f, 

and PO4 representing BP4 in Figure 5.1g and POVo5 representing BPVo5 in Figure 5.2h of our 

previous work
113

) sites. As can be clearly seen, ν1 larger than 1250 cm
-1

 represent direct TiO2 

surface sites, while below 1200 cm
-1

 there is a collection of Pt associated sites; the lower 

vibration of the latter may be due to CO2 stretching inhibited by CO2‘sbonding interactions with 

Pt clusters as can be revealed by DPs in Figure 5.6.  

We have shown the correlations of the C-O bond breaking tendency with negative charge 

accumulation at C and with O-C-O angle of CO2, and the latter two properties well correspond to 
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vibrational frequencies (ν2 and ν3). Therefore, it is desirable to develop an experimental 

obtainable signal to predict promising CO2 adsorption sites/configurations with high C-O bond 

breaking tendency. Plotted in Figure 5.10, d & e are the average C-O bond length verse ν2 and 

ν3 of stable CO2 adsorption sites on supported tetramer, hexamer, and octamer (the same sites 

considered in Figure 5.10, a & b). Good relation of ν2 and ν3 with C-O bond length can be easily 

seen. Higher ν2 and lower ν3 frequencies suggest the adsorbed CO2 with longer C-O bond length. 

We believe these correlations would offer valuable information to experimental maneuver in 

understanding the adsorption sites, electronic properties, and catalysis of adsorbed CO2 species.  

5.5 Conclusions 

The geometry (2D or 3D) of Pt tetramer, hexamer, and octamer supported on anatase 

TiO2 (101) can significantly affect the CO2 adsorption based on DFT calculations. Compared to 

2D Pt clusters, 3D Pt clusters provide more binding sites for bent form CO2 with electron 

accumulated at C, which aids in the formation of key dissociation precursor leading to the 

products of CO2 photoreduction. This geometry-dependent CO2 adsorption may be explained by 

structural fluxionality and binding competition.  

Structural fluxionality is quantified by defining it as displacement (per atom). We find 

that at interface edge site 3D clusters tend to have high structural fluxionality than pro-2D 

clusters. This is because the top layer atoms of 3D cluster are freer to move as compared to 2D 

cluster. High fluxionality capability is also related to stronger CO2 binding, as greater geometry 

reconstruction enables maximum orbital overlaps of Pt clusters and CO2. Binding competition 

occurs when more than one Pt atoms attempt to bind with CO2, which may mitigate maximum 

orbital overlaps among each Pt-CO2 bonding interaction, leading to CO2 instability. The failure 

for CO2 to adsorb on the pro-2D surface can be understood by the structural fluxionality and 
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binding competition. When Pt tetramer and hexamer deposit on perfect anatase TiO2 (101), they 

exhibit 3D structure, whereas on reduced surface, interestingly, pro-2D structure is favored. This 

is due to Pt cluster’s strong disposition to bind with the surface Ti atoms; in addition to 5c-Ti and 

6c-Ti, oxygen vacancy creates 4c-Ti and more 5c-Ti atoms on anatase TiO2 (101) surface, which 

make Pt tetramer and hexamer flatter in order to easily bind with the surface Ti atoms.       

DOS and DP suggest that the main bonding states for CO2-TiO2 supported subnanometer 

Pt cluster come from CO2 s&p - metal d state in the range -10 and -5 eV (compared to Fermi 

level). In comparison of the DOS, DP, and the energetics of interface edge and Pt only 

(involving one and two Pt atoms) sites on supported Pt octamer and hexamer, it is suggested that 

CO2 binding strength is not correlated with the number of Pt atoms involved. The interface edge 

site has stronger CO2 binding strength than Pt only sites, and such enhancement may be from 

extra bonding interaction with the surface oxygen atom. Furthermore, to make CO2 activation 

feasible leading to the products of CO2 photoreduction, C-O bond breaking is critical, which 

results from the filling of antibonding orbitals of the CO2 molecule.
113

 We find that this bond 

breaking tendency is related to charge accumulation at C and O-C-O angle of adsorbed CO2 

species.   

The electronic and geometric properties of the adsorbed CO2 can be revealed by 

vibrational frequencies. In addition to CO2 adsorption sites on Pt octamer (previously reported
113

), 

the correlations of ν2 and accumulation at C, and of ν3 and O-C-O angle of adsorbed CO2 also 

apply to those on Pt tetramer and hexamer. We further find that ν1, ν2, and ν3 can be used as 

reliable indicators to more clearly identify CO2 adsorption sites. For ν1, 1200 ~1250 cm
-1

 is the 

identifying range; above the range it represents the direct TiO2 surface site, while below it 

represents Pt associated sites. For ν2, the lower range (~570-625cm
-1

), higher range (~760-775 
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cm
-1

), and in-between these two ranges indicate one-Pt atom, interface edge, and mixed interface 

edge/two-Pt atoms adsorption sites, respectively. For ν3, the higher range (~1910-2000 cm
-1

), 

lower range (1480-1540 cm
-1

), and in-between these two ranges indicate one-Pt atom, interface 

edge sites, and mixed interface edge/two-Pt atoms adsorption sites, respectively.      

In summary, we have identified two geometry-dependent factors that affect the formation 

of the key dissociation precursor state for CO2 photoreduction. The driving force for the 

reconstruction of the Pt clusters (2D or 3D) is discussed as well as the C-O bonding breaking 

tendency. Vibrational frequencies are proposed as indicators to gain insights into the adsorption 

sites, electronic properties, and catalysis of adsorbed CO2 species to help practical design of 

promising CO2 reduction photocatalyst in subnanometer metal/semiconctor framework.   
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Figure 5.1 Stable CO2 adsorption configurations on the perfect anatase TiO2(101) surface in the 

presence of Pt tetramers (O in red, C in black, Ti in blue, and Pt in green. The numbers indicate 

the bond lengths in Å). 

 

 

Figure 5.2 Stable CO2 adsorption configurations on the perfect anatase TiO2(101) surface in the 

presence of Pt hexamers (O in red, C in black, Ti in blue, and Pt in green. The numbers indicate 

the bond lengths in Å). 
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Figure 5.3 Stable CO2 adsorption configurations on the reduced anatase TiO2(101) surface in the 

presence of Pt tetramers (O in red, C in black, Ti in blue, and Pt in green. The numbers indicate 

the bond lengths in Å). 

 

 

Figure 5.4 Stable CO2 adsorption configurations on the reduced anatase TiO2(101) surface in the 

presence of Pt hexamers (O in red, C in black, Ti in blue, and Pt in green. The numbers indicate 

the bond lengths in Å). 
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Figure 5.5 p-DOSs (Ti, O, and Pt) and density plots of reduced anatase TiO2(101) surface-

supported Pt clusters: (a) tetramer, and (b) hexamer. The insets show the density plots at 

corresponding positions: (a) -0.77, -1.60, and -2.05eV and (b) -0.12, -0.58, and -1.77eV (Shown 

in the figures correspond to spin up). 
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Figure 5.6 p-DOSs and associated density plots (DPs) of specific states formed upon CO2 

adsorption directly on the Pt hexamer involving one Pt atom (PH2): (a) p-DOSs of the adsorbed 

CO2 and Pt; (b) p-DOSs of s and p states of the adsorbed CO2. DP1-DP5 are the same states in 

both figures accordingly at -8.80, -7.50, -6.66, -6.55, and -3.30 eV (Shown in the figures 

correspond to spin up). 
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Figure 5.7 (a) Displacement (structural fluxionality tendency) of all CO2 adsorption sites at the 

interface edge; (b) Displacement verses adsorption energy of stable interface edge sites on the 

anatase TiO2(101) supported tetramer, hexamer, and octamer (octamer
113

: PO1(BP1), 

POVo1(BPVo1), POVo4(BPVo4), and  POVo6(BPVo6);  PO, PH, and PT represent Pt octamer, 

hexamer, and tetramer; Vo represents an oxygen vacancy). 
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Figure 5.8 (a) The DP at -6.00 eV of PHVo5; (b) the DP at -6.48 eV of PHVo6. 

 

 

 

 

Figure 5.9 Correlations between the average C-O bond length (bond breaking tendency) and (a) 

the negative charge accumulation at C, and (b) O-C-O angle of the adsorbed CO2 species in 

contact with the supported Pt tetramer, hexamer, and octamer
113

.    
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Figure 5.10 Correlations between (a) the bending frequency (ν2) and the negative charge 

accumulation at C of CO2, and between (b) the asymmetric stretching frequency (ν3) and the O-

C-O angle of CO2. (c) The symmetric stretching frequency (ν1) verses all the stable adsorption 

sites. Correlations between average C-O bond length (bond breaking tendency) and (d) ν2, and (e) 

ν3 [(a)(b)(d)(e) from Pt related sites and (c) from all the stable sites on supported tetramer, 

hexamer, and octamer; Octamer
113

: PO1(BP1), POVo1(BPVo1), POVo4(BPVo4), and  

POVo6(BPVo6);  PO, PH, and PT represent Pt octamer, hexamer, and tetramer; Vo represents an 

oxygen vacancy]. 
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Table 5.1 Calculated properties
a
 based on CO2 adsorption configurations on perfect anatase 

TiO2(101) in the presence of Pt tetramer and hexamer. 

Ads.                     

Config. 
-Eads(eV) ∠OCO(deg.) 

∆e of CO2   ν(CO2)(cm-1) 

C O O ν1 ν2 ν3 

PT1 0.22 151.2 0.337 -0.078 -0.023 1161 594 1989 

PT2 -0.01 133.5 -0.002 0.036 0.061 1259 801 1663 

PT3 -0.07 130.0 0.006 0.075 -0.013 1161 788 1695 

PH1 1.01 137.1 0.508 0.061 -0.111 1165 707 1742 

PH2 0.72 146.6 0.432 -0.025 -0.109 1114 650 1927 

PH3 0.71 125.9 0.602 0.037 -0.064 1180 764 1483 

PH4 0.64 136.6 0.497 -0.039 -0.051 1163 734 1694 

PH5 0.08 133.3 -0.012 0.055 0.047 1263 804 1654 

PH6 0.01 125.9 -0.023 0.020 -0.001 1262 833 1541 

PH7 -0.04 123.5 0.632 0.058 -0.063 1163 738 1434 

a
Values represent the adsorption energy, O-C-O angle of CO2, difference of Bader charge of CO2 

molecule upon adsorption, and vibrational frequencies of symmetric (ν1), bending (ν2), and 

asymmetric (ν3) stretching modes (∆e >0 means electron accumulation; PT and PH represent Pt 

tetramer and Pt hexamer, respectively).      

Table 5.2 Calculated properties
a
 based on CO2 adsorption configurations on reduced anatase 

TiO2(101) in the presence of Pt tetramer and hexamer. 

Ads.                     

Config. 
-Eads(eV) ∠OCO(deg.) 

∆e of CO2   ν(CO2)(cm-1) 

C O O ν1 ν2 ν3 

PTVo1 0.22 136.2 0.437 0.038 -0.028 1182 699 1788 

PTVo2 -0.06 131.1 0.114 -0.003 0.033 1191 762 1532 

PTVo3 -0.97 137.4 0.117 0.048 0.015 1163 699 1858 

PHVo1 0.16 154.7 0.341 -0.053 -0.047 1181 574 1996 

PHVo2 0.02 131.8 0.530 0.000 0.011 1121 720 1706 

PHVo3 -0.03 140.4 0.392 -0.004 -0.004 1150 648 1858 

PHVo4 -0.13 138.9 0.419 -0.041 0.044 1194 686 1774 

PHVo5 -0.33 126.9 0.596 -0.034 -0.053 1124 740 1593 

PHVo6 -0.41 130.2 0.510 -0.006 0.036 1095 714 1710 

PHVo7 -0.83 133.5 -0.017 0.050 0.040 1262 792 1680 

a
Values represent the adsorption energy, O-C-O angle of CO2, difference of Bader charge of CO2 

molecule upon adsorption, and vibrational frequencies of symmetric (ν1), bending (ν2), and 

asymmetric (ν3) stretching modes (∆e >0 means electron accumulation; PT and PH represent Pt 

tetramer and Pt hexamer, respectively; Vo represents an oxygen vacancy).      
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CHAPTER 6: CO2 PHOTOREDUCTION ON SUPPORTED PT SUBNANOMETER 

CLUSTERS: EFFECT OF EXTRA ELECTRONS 

 

  

In this chapter we will explore the effect of extra electrons on CO2 adsorption sites of 

supported Pt tetramer, hexamer, and octamer sites obtained previously. Adding electrons to the 

model surfaces is to simulate photoexcited electrons and to study how it affects the CO2 anion 

formation, the first and key step in CO2 photoreduction. In previous study, we found significant 

charge transfer to the adsorbed CO2 on neutral TiO2 surface. On the charged surfaces, the 

subnanometer Pt clusters help transfer the electron to CO2. This indicates the potential of the 

subnanometer Pt or other metal clusters to not only offer adsorption sites for bent form CO2 but 

also to facilitate CO2 reduction. The energetics and electron induced cluster reconstruction on 

charged surfaces are also reported in this chapter.       

6.1 Introduction 

Theoretical studies can help in the efficient design of promising catalyst.
168

 Recently, we 

explored CO2 photoreduction on subnanometer Ag and Pt clusters supported on TiO2 surfaces 

using first-principles calculations.
58, 113

 The root cause of cluster induced sub-bandgaps
73, 74

 was 

investigated. The tendency for cluster sintering was also evaluated. 

The incorporation of CO2 molecule to the supported Pt clusters surfaces was then 

investigated to shed lights on the first and key step (CO2 to CO2
-
 anion

7, 122
) of CO2 

photoreduction mechanism.
113

 Prior ab initio studies showed that bent form CO2 barely adsorbed 

on stoichiometry surfaces of cluster and periodic TiO2 models, 
124, 126, 127, 152

 while some 
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adsorption sites were identified on the surface with an oxygen vacancies.
122, 153

 Similar trends 

were reported on other oxide surfaces such as ceria(110).
140

 Surprisingly, we found that Pt 

octamers deposited on anatase TiO2 benefit adsorption sites for bent form CO2 in highly bent 

form thus enhancing such tiny cluster’s capability to dissociate CO2.
113

 Besides, we also found a 

morphology effect (two dimensional (2D) and three dimensional (3D) geometries) of the Pt 

clusters on CO2 adsorption, which was used to explain the structural fluxionality characteristics 

of the cluster. 

In this article, we extend our previous studies to simulate photoexcited electrons on the 

supported Pt clusters, which we consider the effect of “light”, the energy source enabling the 

photoreaction. Photoexcited electron has been simulated by introducing extra electrons to the 

systems with the compensating neutralizing positive background charges, 
122, 124, 151

 and by 

attaching a hydrogen atom allowing the population of the electron from hydrogen atom to the 

conduction band.
169

 He et al.
122

 studied the enegetics of adsorbed CO2 on anatase TiO2(101) 

surfaces upon the addition of one electron, and similar study has investigated on Brookite TiO2 

surfaces.
124

 The mechanism steps leading to HCOOH and CO was studied on bulk TiO2 surface 

and the TiO2 nanocluster upon the addition of electrons;
151

 on the other hand, such steps were 

also studied by attaching a hydrogen atom to the surface 2-fold bridging O atom to approximate 

photoexcited electrons.   

Objectives of this study are to (i) find out whether or not the subnanometer Pt clusters 

help the transfer of the negative charge to the adsorbed CO2 to increase the reduction chance (ii) 

investigate energetics and structural parameters of the adsorbed CO2, (iii) see if there is any 

morphology effect upon the electron addition, and (vi) study the effect of extra electron on the 

CO2 dissociation to CO. Together with our previous work regarding neutral supported Pt clusters 
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surfaces and the morphology effect,
113

 this study will advance the design of potential 

subnanometer metal cluster/semiconductor photocatalysts for CO2 photoreduction. 

To  study the success of the first and key step of CO2 photoreduction on Pt clusters/TiO2, 

extra electrons of 1, 2, and 3 are added to the obtained CO2 adsorption configuration on perfect 

and reduced TiO2 supported Pt tetramers, hexamers, and octamers.
113

 We assess four basic 

ingredients
113

 leading to the success of the first and  key step, the availability of CO2 binding 

sites, and their energetics and structural information. Reported in Figure 6.1 is a brief overview 

of such configurations. B2 and BVo1 (Figure 6.1a&b) are the adsorption sites without cluster’s 

presence. PT2 (Figure 6.1c) is the site not associated with the cluster. PT1, PTVo1, PHVo1, PH2, 

PO2, and POVo1 (Figure 6.1d-i) are Pt related sites. Specifically, PTVo1 and POVo1 are 

interface edge sites where one O of CO2 is interacting with the surface 5c-Ti atom while C or the 

other O with Pt clusters. PT1, PHVo1, PH2, and PO2 are Pt only site, among which PT1, PHVo1, 

and PH2 are 1-Pt only sites, and PO2 is 2-Pt only site. 1-Pt only and 2-Pt only sites mean CO2 

interacts with only one Pt and two Pt atoms of the clusters, respectively.
113

  

6.2 Computational Methods 

The model surfaces are from our previous studies of Pt tetramer, hexamer, and octamer 

supported on perfect and reduced anatase TiO2 (101) surfaces.
58

 The DFT calculations were 

performed using the VASP (Vienna Ab Initio Simulation package) code.
87-89

 Exchange-

correlation was represented by the Perdew–Burke–Ernzerhof (PBE) functional of the generalized 

gradient approximation (GGA),
90

 and the electron-ion interactions were modeled by the 

projector-augmented wave (PAW)
91

 method. The parameters used are the same as those in 

previous studies. To simulate the photoexcited electrons, we have added extra electrons to the 

model surfaces with the compensating neutralizing positive background charges, 
122, 124, 151
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6.3 Results and Discussion  

Reported in Figure 6.1 is a brief overview of such configurations. B2 and BVo1 (Figure 

6.1a&b) are the adsorption sites without cluster’s presence. PT2 (Figure 6.1c) is the site not 

associated with the cluster. PT1, PTVo1, PHVo1, PH2, PO2, and POVo1 (Figure 6.1d-i) are Pt 

related sites. Specifically, PTVo1 and POVo1 are interface edge sites where one O of CO2 is 

interacting with the surface 5c-Ti atom while C or the other O with Pt clusters. PT1, PHVo1, 

PH2, and PO2 are Pt only site, among which PT1, PHVo1, and PH2 are 1-Pt only sites, and PO2 

is 2-Pt only site. 1-Pt only and 2-Pt only sites mean CO2 interacts with only one Pt and two Pt 

atoms of the clusters, respectively.
113

  

6.3.1 Effect of Extra e
-
 on Adsorption Energy 

Upon the addition of electrons (the light irradiation), we find that initial metastable 

adsorption sites become stable; for initial stable sites, which are mainly Pt clusters related sites 

(Pt only & interface edge sites), some CO2 binds more stronger and some do oppositely. For Pt 

only sites the increase of adsorption energy positively correlates with the number of electrons 

added, whereas no such trend was found on interface edge sites. Note that on supported Pt 

tetramers, both Pt only and interface edge sites exhibit positive correlations between adsorption 

energy and the electron addition. This implies that smaller clusters are more sensitive to the 

added electrons positively in terms of CO2 adsorption. In general, it is suggested the irradiation 

of light can strengthen the CO2 binding or increase the binding sites on the TiO2 surfaces without 

Pt clusters as well as the TiO2 surfaces with cluster’s presence.  

For initial metastable sites, shown in Figure 6.2 are selected initial metastable CO2 

adsorption of sites without cluster’s presence (B1, B2, and BVo5), not associated with cluster 

(PT2 and PT3), and Pt related (PH7 and PHVo3-PHVo5). As can be seen, when adding more 
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electrons, sites without cluster’s presence become stable. For example, the CO2 binding of BVo5 

gradually increases as the incorporation of electrons from neutral to three. The same trend is also 

found on sites not associated with clusters. The more electron is added, the stronger the CO2 

binding in PT2 and PT3 sites. Pt related sites that are initially metastable also have similar trend; 

the adsorption energies of PHVo3 and PHVo5 have increased to fairly strong CO2 binding, and 

the instability of CO2 is decreased for PHVo4.      

For initial stable sites, Pt related sites (interface edge and Pt only sites) behave differently 

upon the electron addition. Shown in Figure 6.3a are the selected interface edge sites. As can be 

seen, some sites show the correlation of CO2 binding with electron addition, while some don’t. 

For example, PTVo1 and PH3 show the positive correlation, while the extra electrons mitigate 

the CO2 binding in PO1 and POVo1. However, Pt only sites exhibit positive correlations 

between the electron and CO2 binding, as shown in Figure 6.3b. We would like to point out that 

interface edge and Pt only sites on supported Pt tetramer (PTVo1 & PT1) both show positive 

correlations, and this is not seen in larger size clusters, especially for Pt octamer. For Pt hexamer 

cases (PH1-PH4 and PHVo1 & PHVo2), interface edge and Pt only sites still have the same 

trends of the adsorption energy upon electron addition except PH1. As on the supported octamers, 

interface edge and Pt only sites start to behave differently. Also, PT1 shows the most increase in 

adsorption energy than any other sites. It is revealed that the smaller the cluster is, its respond to 

electron addition is more enhanced, which we will explain in the section followed. 

6.3.2 Cluster Enhanced Charge Transfer   

Even though the addition of electrons (the light irradiation) stabilizes the initial 

metastable CO2 adsorption sites, the negative charge transfer to those adsorbed CO2 is inhibited. 

Strangely, most sites that are not associated with clusters do not populate electron to the 
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adsorbed CO2, but some do, which makes them resemble the electron population capability of Pt 

related sites. On the contrary, supported Pt clusters help the electron transfer to the adsorbed CO2 

upon electron addition to the model systems. This is a promising result, which leads to a 

conclusion that subnanometer Pt cluster not only provide adsorption site for bent form CO2,
113

 

but also help electron transfer to such CO2 to facilitate the formation of CO2
-
 anion and CO2 

bond breaking.  

For CO2 adsorption associated with TiO2, shown in Figure 6.4 a&b is the transfer of 

negative charge to C of CO2 on the sites only in contact with TiO2: B1, B2, and BVo1-BVo5 are 

the sites without the presence of the clusters, while PT2, PTVo2, PO4, and POVo5 are direct 

adsorption on the TiO2 with the cluster’s presence. It can be seen that the additional electrons do 

not transfer to the adsorbed CO2 or for some cases additional electrons mitigate the negative 

charge originally possessed in the adsorbed CO2. B2 and PT2 show trends of losing or gaining 

charges as the addition of the electrons, and BVo2 and BVo3 illustrate the charge decreasing 

trend. However, some adsorbed CO2 do accumulate charge as the electron is added. As shown in 

Figure 6.4b, BVo1, BVo4, and PTVo2 (Vo representing the reduced surface) show some charge 

increment.  

For CO2 adsorption associated with Pt clusters, in general, the added electrons transfer to 

the adsorbed CO2 in Pt related sites, but there are some differences between interface edge and Pt 

only sites. Shown in Figure 6.5a&b are the interface edge and Pt only sites from Pt tetramer, 

hexamer, and octamer deposited on stoichiometric and reduced anatase TiO2(101) surfaces. 

Figure 6.5a shows that at some interface edge sites there is a limitation of the charge transfer to 

the adsorbed CO2. PH3 and PH7 indicate that the charge transfer is saturated to those CO2, while 

from PHVo3 and PHVo4 more electrons added reveal a decrease in the negative charge in the 
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CO2. On the other hand, adsorbed CO2 species in Pt only sites indicate fairly consistent trends of 

the charge increase on the adsorbed CO2. This indicates the potential of Pt related sites to 

accumulate more electrons as more and more electrons are photo-excited, leading to the high 

success of the first and key step of CO2 photoreduction and C-O bond breaking leading to 

valuable hydrocarbons such as CO, HCO2H, CH2CO, CH3OH, and CH4.  

We would like to point out that the charge accumulation capability of CO2 in BVo1, 

BVo4, and PTVo2 is similar to the Pt related sites just discussed. From our previous study, we 

have shown that the binding of CO2 in the Pt related sites is facilitated by the hybridization of the 

bonding molecular orbitals of CO2 with d orbitals of the Pt atoms.
113

 We suggest that these 

boning orbitals formed by CO2 and Pt clusters serve as channels for the charge transfer when the 

electron is added to the systems. The selected density plot of BVo1 from the dominating bonding 

states (Figure 6.4c) shows the formation of the bonding orbital form by C of CO2 and surface Ti 

atom of the anatase TiO2 (101) surface. It is concluded that as long as C of CO2 is bonding with 

Ti, Pt, or any other metal clusters, it is possibly that CO2 can be bound, leading to the formation 

of CO2
-
 anion and further to light hydrocarbons.      
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Figure 6.1 Selected CO2 adsorption configurations on anatase TiO2(101) surfaces w/wo Pt 

clusters (B representing TiO2(101) surface without cluster; PH, PT, and PO representing Pt 

tetramer, Pt hexamer, and octamer, respectively; Vo represents an oxygen vacancy; O in red, C 

in black, Ti in blue, and Pt in green. The numbers indicate the bond lengths in Å). 

 

 
Figure 6.2 CO2 adsorption configurations on anatase TiO2(101) surfaces w/wo Pt clusters (B 

representing TiO2(101) surface without cluster; PH, PT, and PO representing Pt tetramer, Pt 

hexamer, and octamer, respectively; Vo represents an oxygen vacancy; 1e-3e representing the 

addition of 1-3 electrons). 
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Figure 6.3 CO2 adsorption configurations on anatase TiO2(101) surfaces w/wo Pt clusters: (a) 

interface edge sites and (b) Pt only sites (B representing TiO2(101) surface without cluster; PH, 

PT, and PO representing Pt tetramer, Pt hexamer, and octamer, respectively; Vo represents an 

oxygen vacancy; 1e-3e representing the addition of 1-3 electrons). 
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Figure 6.4 Negative charge accumulation at C of bound CO2 of sites on anatase TiO2(101) 

surfaces w/wo Pt clusters: (a) inhibited and (b) promoted charge transfer to C upon the addition 

of electrons. (c) Density plot of BVo1 (B representing TiO2(101) surface without cluster; PH, PT, 

and PO representing Pt tetramer, Pt hexamer, and octamer, respectively; Vo represents an 

oxygen vacancy; 1e-3e representing the addition of 1-3 electrons). 

(a) 

(b) (c) 
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Figure 6.5 Negative charge accumulation at C of bound CO2 of sites on anatase TiO2(101) 

surfaces w/wo Pt clusters upon the addition of electrons: (a) Interface edge and (b) Pt only sites  

(B representing TiO2(101) surface without cluster; PH, PT, and PO representing Pt tetramer, Pt 

hexamer, and octamer, respectively; Vo represents an oxygen vacancy; 1e-3e representing the 

addition of 1-3 electrons). 
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CHAPTER 7: PRELIMINARY EXPERIMENTAL STUDIES ON SUBNANOMETER PT 

CLUSTER SYNTHESIS AND CHARACTERIZATION  

 

 

Compared to the conventional photocatalyst TiO2, from DFT modeling the TiO2 in the 

presence of Pt subnanometer clusters are found to offer adsorption sites for bent-form CO2 

species with CO2
-
 anion-like nature, and these CO2 bind rather strongly. Besides, the deposition 

of Pt clusters possibly induces sub-bandgaps, which enhances photocatalysis in terms of the 

maximum utilization of source light. In this chapter, an exploratory experimental work is 

performed to validate these computational results. It is shown from experimental results that 

subnanometer Pt clusters seems to be able to offer adsorption sites for CO2, and there seems to 

be some bandgap reduction.  

7.1 Introduction  

Semiconductor based photocatalytic CO2 reduction has become an important field, and 

the main products are useful light hydrocarbons such as CO, HCO2H, CH2O, CH3OH, and CH4. 

The success of this CO2 reduction depends on the first and key step (reduction of CO2 to CO2
-
), 

which relies on the geometry with which CO2 is adsorbed on the TiO2 surface: the more bent the 

geometry of the adsorbed CO2 molecule, the easier the transfer of photoexcited electrons to CO2 

to form the CO2
- 
anion.

122-124
 From the computational study, Pt octamer and hexamer deposited 

on the TiO2 are promising CO2 reduction photocatalysts because they offer adsorption sites for 

bent-form CO2 on the supported Pt octamer and hexamer surfaces either at the interface edge of 

the cluster and the TiO2 or directly on the Pt clusters. On the other hand, doping
9-11

 and defect 
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creation
72

 have been demonstrated to reduce the bandgap, but it also increases the chances for the 

recombination of e-/h+ pairs
117

. Prior theoretical reports have shown sub-bandgap creation by 

depositing Ptn(n=1-3),
73

 Ptn(n=1-8),
81

 and Ag clusters(dimer, tetramer, and octamer)
58, 74, 75

 on 

anatase and rutile TiO2 surfaces. The recent theoretical result shows that the Pt cluster of 37 

atoms is very likely to induce a continuous band within the bandgap of anatase TiO2 (101), 

bringing a negative effect to photoactivity of TiO2 due to the formation of recombination center 

of e-/h+ pairs.
109

  

In this study, cluster sizes consisting of 8, 16, 24, 32, 40, and 55 atoms on anatase TiO2 

will be obtained via dendrimer-encapsulated synthesis. Temperature-programmed desorption and 

UV-Vis are used to validate the adsorption sites and cluster induced sub-bands reported by the 

DFT results.  

7.2 Experimental Details  

For synthesis, the dendrimer-encapsulated metal clusters
52, 170-172

 was used to synthesize 

Pt subnanometer clusters. The synthesis procedure follows Castillo et al. work,
52, 57

 which starts 

with the complexation of the Pt ion with the PAMAM dendrimer (G4-OH) for 24 hours. The 

molar ratio of the metal ion/dendrimer of 6, 10, 21, and 55 are used to synthesize subnanometer 

clusters and nanoparticle. Fourth-generation dendrimer (G4OH) with 10 wt% in methanol 

solution from Dendritech Inc. (Midland, MI) is used with a dendrimer stock solution of 250µM. 

K2PtCl4 (>99%) is used as received, and the metal precursor of 0.01M is prepared. 20 molar fold, 

compared to metal precursor, of freshly prepared NaBH4(1M) is then used as reduction agent 

leading to encapsulated Pt clusters. The deposition of the clusters on the surface of anatase TiO2 

follows a previous study that the slurry containing the dendrimer-encapsulated metal clusters and 
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anatase TiO2 is stirred until the color of the slurry turn to light gray.
173

 The decomposition of the 

dendrimer is via thermal treatment; mixture of He and O2 at 200°C.  

For characterization, the TEM picture in Figure 6.1 shows that the sizes of the Pt clusters 

around 3nm that validates the synthesis procedure with the target 55 molar ratio of the metal 

ion/dendrimer. The Pt particles can be seen clearly deposited on the anatase TiO2 surface, and 

this confirms the deposition procedure. CO2 temperature-programmed desorption (CO2-TPD) 

studies were performed to investigate the availability of the CO2 adsorption sites and the CO2 

binding strength on the anatase TiO2 supported Pt clusters. A Cirrus MKS mass spectrometer 

(MS) is connected with the reactor inside a Thermoscientific Thermolyne tube furnace, and 50 

mg of the catalyst is used. The catalyst is first reduced under a gas mixture of 5% H2 and He at a 

temperature of 200°C for 1 hour, and then is cooled to a temperature of 50°C under He only 

environment. 10% CO2 in He was introduced for 30 min for the CO2 adsorption on the catalysts, 

and the CO2 desorption was carried out at a ramp rate of 10°C/min to 800°C which is held for 10 

min. when reached. UV/Vis diffuse reflectance is used to estimate the optical band gaps of the 

catalysts, which is the estimation of sub-bandgaps formation. The catalyst powders were 

sandwiched between two quartz plates, and the spectra were using JASCO V-670.   

7.3 Results and Discussions  

CO2 - TPD results of Pt clusters (6, 10, and 21 atoms) and clean anatase TiO2 are shown 

in Figure 6.2. No apparent peaks of clean anatase TiO2 reveal CO2 adsorption is not likely to 

happen on the clean anatase TiO2. Surprisingly, supported Pt clusters (6, 10, and 21 atoms) 

reveal their availability of CO2 adsorption sites. There are two major peaks locating at around 

300-400°C and 600-700°C, and a peak occurs at 100-150°C for supported 21 atom Pt cluster 

case. The peak positions for the three catalysts are almost the same in the 300-400°C, and this 
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means that there is no cluster size effect on the binding site in this range. However, peak 

positions at 600-700°C show some variation, which means that size is one factor for the binding 

site in this range. It appears, at 600-700°C, the larger the Pt clusters is, the smaller amount the 

CO2 adsorption. However, we would like to point out that the peaks at 300-400°C and 600-

700°C could also indicate the CO2 from the dendrimer decomposition. A proper dendrimer 

removal step is needed to eliminate this factor. Since our adopted dendrimer removal step is 

below 200°C, the peak occurring at 100-150°C for supported 21 atom Pt cluster may reveal the 

availability of CO2 adsorption sites on these tiny clusters.  

As shown in Figure 6.3, the optical absorption of the sample catalysts are represented by 

Kubelka−Munk spectrum calculated with reflectance data using Kubelka−Munk equation.
174

 It is 

revealed that the bandgap of anatase TiO2 is estimated to be around 3.23eV, which is consistent 

with literature results.
5, 175

 There seems to be a bandgap reduction toward visible range as the 

size of the Pt clusters decrease, possibly resulting from induced states within the bandgap   by the 

deposition of subnanometer Pt clusters.    

7.4 Conclusions  

The subnanometer Pt cluster of the size in 6, 10, and 21 atoms are synthesized using 

dendrimer-encapsulated techniques, and deposited on the anatase TiO2 to validate the DFT 

results. From TPD results, it seems that supported subnanometer Pt clusters can offer adsorption 

sites for CO2, but a strong dendrimer removal step is needed to further clarify the results. DFT 

results show possible sub-bandgaps formation by the application of subnanometer Pt cluster on 

the anatase TiO2, which agrees with the trends shown in the experimental results. From the 

computational and experimental methods, it is indicated that the application of subnanometer 
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metal cluster can be an feasible method for the design of potential photocatalysts for CO2 

reduction.     

 

Figure 7.1 TEM photo of the Pt particles (55 molar ratio of the metal ion/dendrimer) on the 

anatase TiO2 surface (TEM by Kassie Ngo, USF). 

 

 

 

 

 

 



127 
 

 

Figure 7.2 CO2-TPD of anatase TiO2 and supported n (n=6,10,and 21) atom Pt clusters (TPD by 

Ummuhan Cimenler, USF). 

 

 
Figure 7.3 Kubelka−Munk function vs the energy of anatase TiO2 and supported n (n=6,10,and 

21) atom Pt clusters. 
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CHAPTER 8: CONCLUSIONS AND FUTURE WORK 

 

 

8.1 Conclusions 

In this research, the reduction of CO2 on subnanometer Ag/Pt clusters (dimer, tetramer, 

hexamer, and octamer) supported on anatase TiO2 are explored using Density Functional Theory 

calculations to shed light on the design of subnanometer metal clusters based photocatalysts.  

In the study of interplays between the subnanometer cluster and TiO2 support (catalysis 

part), the goal was to investigate binding mechanism to assist subnanometer clusters 

characterization and to gain insights into issues related to catalysis. It was found that when 

clusters are deposited on the anatase TiO2 (101) surface, the nucleation centers for Ag clusters 

are surface O atoms, while for Pt clusters the centers are surface Ti sites. A possible driving 

force for encapsulation is metal cluster’s strong tendency to binding with specific surface atoms 

of the support. An NEB study resulting in the preliminary encapsulation state considers rotation 

and diffusion of the Pt cluster on the support, and suggests the rotation takes the most energy to 

initiate cluster encapsulation. The adsorption energy and the number of stable cluster adsorption 

sites are indicators for the tendency of the cluster sintering tendency. The stronger adsorption 

energy and more stable adsorption sites mean that clusters bind strongly with support and that 

there are more trapping sites for the clusters. Compared to Ag clusters, Pt clusters are less likely 

to sinter on the anatase TiO2 (101) surface.   

In the investigation of CO2 adsorption on TiO2 in the presence of Ag/Pt clusters (CO2 

photoreduction study), the focus was on the first and key step of the CO2 photoreduction. The 
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effect of the presence of subnanometer clusters were first studied using Ag/Pt octamers; Pt 

tetramer, hexamer, and octamer were then used to explore the cluster geometry effect. It was 

found that the presence of Ag or Pt octamers can substantially modify CO2 adsorption even at 

TiO2 surface sites where there is no direct CO2 binding between with the octamer. The 

underlying factors are electron density donation from the clusters to the surfaces and the Ti-O 

(CO2) attraction and Ti-C (CO2) repulsion.       

Interestingly, as opposed to supported Ag octamer and clean TiO2, supported Pt octamer 

provides certain advantages for CO2 photoreduction. The extra adsorption sites for bent-form 

CO2, a key dissociation precursor for CO2 activation, are obtained at interface edge and directly 

on the Pt octamer; furthermore, CO2 binds rather strongly on these sites. Bader charge analysis 

suggests that these Pt related CO2 binding sites are CO2
-
 anion-type complex as negative charge 

accumulates at the C atom of the CO2 molecule. A detailed examination of the associated 

electronic structure suggests that unlike binding to TiO2 sites, where electrostatics play a key role, 

the interaction between CO2 and Pt is instead facilitated by the formation of bonding orbitals 

consist of molecular orbitals of CO2 forming and d states of Pt in the clusters. Further analysis 

shows the main bonding states for Pt-CO2 come from CO2 s&p - metal d state in the range -10 

and -5 eV (compared to Fermi level). Besides, the interface sites bind stronger than Pt-only sites 

which may be extra bonding interaction with the surface oxygen atom. 

Two geometry factors were found for the key precursor adsorption: structural fluxionality 

and binding competition. Structural fluxionality is measured by defining it as displacement (per 

atom of the clusters), and it was found that especially at interface edge site 3D Pt clusters have 

higher structural fluxionality than pro-2D Pt clusters. High fluxionality capability means more 

chances to reach maximum orbital overlaps of Pt clusters and CO2, resulting in stronger CO2 
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binding. Binding competition occurs when there is a tug of war between more than one Pt- CO2 

interactions, leading to failure to meet maximum orbital overlaps of Pt clusters and CO2. The 

failure for CO2 to adsorb on the 2D surface can be understood by the limited structural 

fluxionality and binding competition: full orbital overlaps of more than Pt- CO2 interactions are 

restricted by the rigid 2D Pt resulting from the strong Pt and surface Ti interactions. Pt tetramer 

and hexamer exhibit different structures on perfect and reduced surfaces. The pro-2D (on 

reduced surface) rather than 3D structures can be explained by more interactions of the Pt 

clusters with the surface Ti atom of the support.   

The negative charge accumulation, O-C-O angle, and adsorption sites of the adsorbed 

CO2 on supported Pt clusters (octamer, hexamer, and tetramer) can be revealed by vibrational 

frequencies. ν2 mode is an reliable indicator of negative charge accumulation on C while ν3 

mode an indicator for identifying bent CO2 geometries, which together revealing the formations 

of CO2
-
 anion precursor leading to the success of  CO2 photoreduction. ν1, ν2, and ν3 modes can 

be used to identify CO2 adsorption sites. Firstly, the Pt cluster associated sites and direct TiO2 

surface site can be unveiled by ν1 and ν2 modes. Specifically, interface edge sites are correlated 

with ν2 in higher range (~760-775 cm
-1

) and ν3 in lower range (1480-1540 cm
-1

). 1-Pt only sites 

are correlated with ν2 in lower range (~570-625cm
-1

) and ν3 in higher range (~1910-2000 cm
-1

). 

A mixed interface edge/2-Pt only sites are in between the higher and lower ranges of ν2 and ν3. 

One possible mechanism of CO2 dissociation to CO on the Pt octamer/reduced anatase 

TiO2 (101) surface, with an energy barrier of 1.01eV, may open alternative pathways for CO2 

photoreduction, resulting from the structural fluxionality of the Pt octamer and the filling of 

antibonding orbitals of CO2 to weaken the intramolecular C-O bond. We also find that the bond 

breaking tendency is related to charge accumulation at C and O-C-O angle of adsorbed CO2 
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species, which can be correlated with vibrational frequencies ν2 and ν3. Moreover, the utilization 

of a larger fraction of photons in the solar spectrum in subnanometer based photocatalysts can be 

achieved by the cluster induced sub-bandgaps. We found that d-band center of the cluster can be 

an indicator for such induced sub-bandgaps. When the absolute value of the d-band center is 

closer and smaller than the value the bandgap of some semiconductors, it is very likely the sub-

bandgaps will exist. Pt clusters can help populate photoexcited electrons to the adsorbed CO2 to 

facilitate the CO2 reduction, as evidenced by results obtained with extra electrons added to the 

system.   

Finally, the experimental results seem to validate the computational results, but further 

clarification is needed to make conclusive findings. The variation of the surface electronic 

structure is one factor determining the chemical and physical properties of the catalyst, and we 

have shown the capability of subnanometer metal clusters to modify the surface electronic 

structure. Our results will be useful in the design of promising subnanometer metal clusters 

based catalysts and photocatalyts. 

8.2 Future Work 

This research investigated the preferred CO2 adsorption in the first and key step of CO2 

photoreduction. Aspects of studies are 1. The effect of the presence of the subnanometer metal 

clusters on TiO2 as compared to the pure TiO2 surfaces. 2. The cluster effect on the preferred 

CO2 adsorption. An ongoing work is the addition of electrons to simulate photoexcited electrons, 

expecting to see supported Pt cluster help the population of photoexcited electron to the 

adsorbate as compared to clean TiO2 surface.  

Further steps to the production of  light hydrocarbons such as HCOOH and CO has been 

studied on TiO2 and TiO2 cluster;
151

 and the reaction barriers were compared. The same steps 
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studies can be investigated on the supported subnanometer metal clusters. This research has 

shown that the application of the subnanometer metal clusters can modify the electronic structure 

of the convention semiconductors.  Also, the mechanism of the cluster induced CO2 dissociation 

to CO due to structural fluxionality is different from larger size nanoparticle. The reaction barrier 

leading to HCOOH and CO is an area worth exploring on the supported Pt subnanometer clusters. 

Pioneering study of further steps of CO2 photoreduction to HCHO, CH3OH, and CH4 can also be 

investigated and compared.   

MOF (Metal Organic Frameworks) are promising nanoporous materials
113, 176

 which are 

crystalline 3D inorganic–organic hybrids constructed from metal clusters (secondary building 

units)
177

 and organic linkers via coordination bonds.
58, 178

 Two main aspects can be investigated: 

1. screening of potential secondary building units and linker candidates for proper bandgap and 

band edges for CO2 reduction reaction. 2. The mechanism study of the first and key step and 

others steps leading to the light hydrocarbon. Bandgap and band edges are crucial to 

photocatalysis. Suitable bandgap allows the utilization of specific light sources, whereas proper 

band edges allow the transfer of the photo-excited electron-hole pairs to facilitate redox reactions. 

The mechanism can also gain insights into the development of potential photocatalysts. The 

applications of the subnanometer metal cluster on MOF materials can also be studied. Different 

combinations of secondary building units, organic ligands, and metal clusters may lead to 

interesting electronic structure, which can open another exciting field photocatalytic CO2 

reduction. 
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Appendix A (Continued) 
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APPENDIX B: SUPPORTING INFORMATION 

 

 

Below is the supporting information for Chapter 3, 4 and 5 (Figure 38-41 for Chapter 3; 

Figure 42-44 and Table B1 for Chapter 4; Figure 45-46 for Chapter 5).  

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

 

 

(e) 

 

 

(f) 

 

 

(g) 

 

 

 

Figure B1 Initial adsorption configurations of Ag and Pt dimers (Ti in blue, O in red, and Ag or 

Pt in silver). 
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Appendix B (Continued) 
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Figure B2 Initial adsorption configurations of Ag and Pt tetramers (Ti in blue, O in red, and Ag 

or Pt in silver). 
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Appendix B (Continued) 
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Figure B3 Initial adsorption configurations of Ag and Pt octamers (Ti in blue, O in red, and Ag 

or Pt in silver). 
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Appendix B (Continued) 
 

 

Figure B4 Assumed Pt and Ag octamers adsorbed on the model surface after its diffusion and 

rotation as temperature is increased (Ti in blue, O in red, and Pt or Ag in green). 
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Appendix B (Continued) 

 

 

Figure B5 Stable CO2 adsorption configurations on reduced anatase TiO2(101) surface: (a) at the 

interface edge of the Pt octamer and reduced surface, and (b) directly on the Pt octamer (O in red, 

C in black, Ti in blue. Yellow arrow indicates the oxygen vacancy. The numbers indicate the 

bond lengths in Å). 

 

Table B1 Calculated Bader charge of CO2 based on BPVo1 and BPVo2 with standard DFT and 

DFT+U
a
 

Ads.                     

Config. 

∆e of CO2  

C O O 

BPVo1 0.595 -0.058 0.039 

BPVo1_U3p5 0.599 -0.056 0.049 

BPVo1_U4p0 0.603 -0.067 0.047 

BPVo1_U4p5 0.599 -0.055 0.053 

BPVo2 0.381 -0.086 -0.003 

BPVo2_U3p5 0.382 -0.082 0.000 

    
a  

BPVo1 and BPVo2 represent standard DFT. BPVo1_U3p5 and BPVo2_U3p5 represent  DFT+U with 

the value of U=3.5 eV.  BPVo1_U4p0 represents DFT+U with the value of U=4.0 eV. BPVo1_U4p5 

represents DFT+U with the value of U=4.5 eV. 
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Appendix B (Continued) 

 

 

Figure B6 Stable CO2 adsorption configurations on perfect and reduced anatase (101) surfaces: 

(a)-(c) on perfect surface, and (d)-(i) on reduced surface (O in red, C in black, Ti in blue. The 

numbers indicate the bond lengths in Å). 
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Appendix B (Continued) 

 

 

Figure B7 Charge density difference of the adsorbed CO2: (a) at the interface (BP1) and (b) on 

the Pt octamer (BP2) on the perfect surface; (c) at the interface (BPVo1) and (d) on the Pt 

octamer (BPVo2) on the reduced surface (O in red, C in black, Ti in blue, and Pt in green; Purple 

isosurfaces representing excess, aruba blue isosurfaces representing depletion). 
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Appendix B (Continued) 

 

 

Figure B8 Structural fluxionality of stable Pt only (1-Pt & 2-Pt) sites on perfect and reduced 

surfaces supported Pt tetramer, hexamer, and octamer. Left: 1-Pt only sites; Right: 2-Pt only sites. 

[Octamer data
113

: PO2(BP2), PO3(BP3), POVo2(BPVo2), and POVo3(BPVo3);  PO, PH, and 

PT accordingly represent Pt octamer, hexamer, and tetramer; Vo represents an oxygen vacancy]. 

 

 

Figure B9 Bending frequency of stable Pt merely sites on perfect and reduced surfaces supported 

Pt tetramer, hexamer, and octamer (PO1-PO4 represent BP1-BP4 in Figure 1d-g, and POVo1-

POVo5 represent BPVo1-BPVo5 in Figure 2d-g of our previous work
113

(PO, PH, and PT 

represent Pt octamer, hexamer, and tetramer; Vo represents an oxygen vacancy). 
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